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Foldit is a multiplayer online game in which players collaborate
and compete to create accurate protein structure models. For spe-
cific hard problems, Foldit player solutions can in some cases out-
perform state-of-the-art computational methods. However, very
little is known about how collaborative gameplay produces these
results and whether Foldit player strategies can be formalized and
structured so that they can be used by computers. To determine
whether high performing player strategies could be collectively
codified, we augmented the Foldit gameplay mechanics with tools
for players to encode their folding strategies as “recipes” and to
share their recipes with other players, who are able to further mod-
ify and redistribute them. Here we describe the rapid social evolu-
tion of player-developed folding algorithms that took place in the
year following the introduction of these tools. Players developed
over 5,400 different recipes, both by creating new algorithms and
by modifying and recombining successful recipes developed by
other players. The most successful recipes rapidly spread through
the Foldit player population, and two of the recipes became parti-
cularly dominant. Examination of the algorithms encoded in these
two recipes revealed a striking similarity to an unpublished algo-
rithm developed by scientists over the same period. Benchmark
calculations show that the new algorithm independently discov-
ered by scientists and by Foldit players outperforms previously
published methods. Thus, online scientific game frameworks have
the potential not only to solve hard scientific problems, but also to
discover and formalize effective new strategies and algorithms.

citizen science ∣ crowd-sourcing ∣ optimization ∣ structure prediction ∣
strategy

Citizen science is an approach to leveraging natural human
abilities for scientific purposes. Most such efforts involve

visual tasks such as tagging images or locating image features
(1–3). In contrast, Foldit is a multiplayer online scientific discovery
game, in which players become highly skilled at creating accurate
protein structure models through extended game play (4, 5). Foldit
recruits online gamers to optimize the computed Rosetta energy
using human spatial problem-solving skills. Players manipulate
protein structures with a palette of interactive tools and manipula-
tions. Through their interactive exploration Foldit players also uti-
lize user-friendly versions of algorithms from the Rosetta structure
prediction methodology (6) such as wiggle (gradient-based energy
minimization) and shake (combinatorial side chain rotamer pack-
ing). The potential of gamers to solve more complex scientific pro-
blems was recently highlighted by the solution of a long-standing
protein structure determination problem by Foldit players (7).

One of the key strengths of game-based human problem ex-
ploration is the human ability to search over the space of possible
strategies and adapt those strategies to the type of problem and
stage of problem solving (5). The variability of tactics and
strategies stems from the individuality of each player as well as
multiple methods of sharing and evolution within the game
(group play, game chat), and outside of the game [wiki pages (8)].
One way to arrive at algorithmic methods underlying successful
human Foldit play would be to apply machine learning techniques
to the detailed logs of expert Foldit players (9). We chose instead
to rely on a superior learning machine: Foldit players themselves.

As the players themselves understand their strategies better than
anyone, we decided to allow them to codify their algorithms
directly, rather than attempting to automatically learn approxi-
mations. We augmented standard Foldit play with the ability to
create, edit, share, and rate gameplay macros, referred to as
“recipes” within the Foldit game (10). In the game each player
has their own “cookbook” of such recipes, from which they can
invoke a variety of interactive automated strategies. Players can
share recipes they write with the rest of the Foldit community or
they can choose to keep their creations to themselves.

In this paper we describe the quite unexpected evolution of
recipes in the year after they were released, and the striking con-
vergence of this very short evolution on an algorithm very similar
to an unpublished algorithm recently developed independently
by scientific experts that improves over previous methods.

Results
In the social development environment provided by Foldit,
players evolved a wide variety of recipes to codify their diverse
strategies to problem solving. During the three and a half month
study period (see Materials and Methods), 721 Foldit players ran
5,488 unique recipes 158,682 times and 568 players wrote 5,202
recipes. We studied these algorithms and found that they fell
into four main categories: (i) perturb and minimize, (ii) aggressive
rebuilding, (iii) local optimize, and (iv) set constraints. The first
category goes beyond the deterministic minimize function
provided to Foldit players, which has the disadvantage of readily
being trapped in local minima, by adding in perturbations to lead
the minimizer in different directions (11). The second category
uses the rebuild tool, which performs fragment insertion with
loop closure, to search different areas of conformation space;
these recipes are often run for long periods of time as they are
designed to rebuild entire regions of a protein rather than just
refining them (Fig. S1). The third category of recipes performs
local minimizations along the protein backbone in order to im-
prove the Rosetta energy for every segment of a protein. The final
category of recipes assigns constraints between beta strands or
pairs of residues (rubber bands), or changes the secondary struc-
ture assignment to guide subsequent optimization.

Different algorithms were used with very different frequencies
during the experiment. Some are designated by the authors as
public and are available for use by all Foldit players, whereas
others are private and available only to their creator or their
Foldit team. The distribution of recipe usage among different
players is shown in Fig. 1 for the 26 recipes that were run over
1,000 times. Some recipes, such as the one represented by the
leftmost bar, were used many times by many different players,
while others, such as the one represented by the pink bar in the
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middle, were used by only one player who chose not to share it
with other players. Not surprisingly, the frequency of usage, in-
dicated by the height of the bars, was significantly higher for the
publicly shared recipes than the private ones.

Context Dependence.Observing the breadth of created recipes, it is
clear that Foldit players use these algorithms to augment rather
than to substitute for human strategizing. Players in essence
perform a problem-informed search over the space of strategies,
and use recipes to encode specific lower-level strategies. Differ-
ent algorithms are employed at different stages in gameplay. Fig. 2
shows the relative frequency of recipe use in the opening,
midgame, and endgame. Expert players exhibit different patterns
of recipe use than the player population as a whole (compare
Fig. 2 A and B). The top Foldit players use recipes tlaloc Contract
3.00 and Aotearoas_Romance in the endgame, while most players
use them almost equally at every stage in a puzzle (Fig. S2 A
and B). Most Foldit players run after-rebuild test exclusively in
the opening, but the top players often use it in the midgame as
well. Local optimize recipes are heavily used in the endgame by
top Foldit players (Fig. 2B and Fig. S2F).

Human strategic judgment plays an important role in choosing
when and how to employ different recipes. Most recipes heavily
rely on the interactive aspects of the game, and are used less as
fully automated tools and more as power tools that serve as an
extension of the player’s strategy. We have not found any recipes
that generate top models without human intervention; instead,

Foldit players employ recipes to perform specific tasks at differ-
ent stages of the folding process. For example, the local optimize
recipes that walk along the protein backbone performing local
minimizations are useless on the initial state of a Foldit puzzle
that starts in an extended chain configuration, because a success-
ful prediction will no longer have that backbone in an extended
conformation and will require a new round of local optimization.
Many of the aggressive rebuilding recipes require specifying
which region of the protein to rebuild, as it is rarely useful to en-
tirely rebuild a protein chain from beginning to end. These re-
cipes are launched by players once they have converged to a
low-energy solution and want to search nearby regions of confor-
mational space before local optimization (Fig. S2 C and D); they
are most useful in the midgame and often run for long periods
without any human intervention. By contrast, all recipes in the
set constraints category are designed to be run before launching
other recipes or manually manipulating the protein (Fig. S2 G
and H).

Overall, the context dependent use of different recipes is key to
successful gameplay, but also makes it difficult to quantitatively
evaluate the effectiveness of individual recipes because they are
optimally used on quite different input protein states. This con-
text dependence also complicates efforts to incorporate the rich
new algorithms developed by Foldit players back into Rosetta or
other automated methods.

Fig. 1. Foldit recipes are used with very different frequencies. Each bar represents a different Foldit recipe; the height of the bar shows the number of times
the recipe was used, and the colors denote different Foldit players. Blue Fuse, at the very left, was run by many players a total of 24,273 times; the creator of
Blue Fuse alone (large pink region) used it over 2,000 times. Most recipes (those represented bymany colors) were run by different players; in contrast, 0 bounce
00.080 (all pink bar) is a private unshared recipe.

A B

Fig. 2. Foldit players employ different recipes at different stages of gameplay. The relative frequency of usage for each recipe category is shown for three
different stages of gameplay (blue, first third of gameplay; red, second third; green, final third) for all players (A) and for top ranked players (B). All players use
local optimize recipes more frequently as gameplay progresses (A), and this trend is even stronger among top players (B). The usage frequency for each
individual recipe is shown in detail in Fig. S2. The actual context dependence of the use of different recipes is likely greater than that shown in the figure;
the division based on elapsed game time used here is relatively crude because different players in different puzzles may spend very different amounts of time
on the opening, middle game, and end game.
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Recipe Evolution. In addition to providing tools for recipe creation,
we enabled sharing, evaluation, and refinement of recipes. These
tools spurred a rapid evolution of recipe use in the Foldit player
population from June 2009 [when the graphical user interface
(GUI) recipes were first introduced; see Materials and Methods]
through the end of August 2010. Fig. 3 shows the number of dis-
tinct recipes run every week across this time period, with different
shades of gray representing different recipes. Two recipes were
particularly heavily used: Quake (in red) and Blue Fuse (in yel-
low). The essential features of the algorithms contained within
these two most popular recipes are similar. Quake is a GUI recipe
that repeatedly packs the side chains and minimizes the side
chain and backbone torsion angles, increasing and decreasing the
strength of an applied set of rubber band constraints to promote
annealing of the structure. The Blue Fuse algorithm (a script re-
cipe; see Materials and Methods) is conceptually similar to but
simpler than Quake: rather than varying the strength of artificial
constraint functions, the strength of atom-atom repulsive interac-
tions is alternately increased and decreased in repeated cycles
of side chain packing and complete torsion angle minimization
(Fig. S3). In both cases, an initially poorly packed structure is
alternately compressed (by minimization with strong constraints
or weak repulsive interactions) and then relaxed (by minimization
with weak constraints or strong repulsive interactions); this alter-
nation appears to be effective in locating low energy, well packed
conformations.

Foldit algorithms evolve in a social fashion, with popular
recipes copied and then elaborated upon. An evolutionary tree
depicting the evolution of the Blue Fuse algorithm family is
shown in Fig. 4; size corresponds to the logarithm of the number
of recipe uses and color represents the recipe author. Popular
recipes spawn large numbers of descendants, and there are multi-
ple independent lineages each spanning many generations.

While the evolutionary mechanisms by which new algorithms
are created (copying and variation) are clear, the mechanisms
through which individual recipes spread through the population
are less so. The popularity of Quake and Blue Fuse could result
from individual player experimentation, player communication
through chat, or player communication within teams. Interviews
with Foldit players suggest that the primary mechanism by which
successful algorithms take over the population is word of mouth.
Players test and then recommend new recipes to others and rate

recipes on the Foldit website, making decisions in part based on
the reputation of the recipe author.

Similarity of Independently Developed Player and Scientist Algo-
rithms. During this same time period, researchers in the Baker
group were attempting to improve the core optimization methods
within the Rosetta structure prediction and design program. A
breakthrough was made with the Fast Relax algorithm, which
achieves more effective energy optimization in less time than
previous Rosetta methods. Benchmarks have shown Fast Relax to
be considerably more efficient then an older algorithm, Classic
Relax (12) used since 2002 (Fig. 5, compare green to red), and
it is now used in all Rosetta de novo and homology modeling
methods as well as enzyme design protocols.

The key innovation in the Fast Relax algorithm compared
to Classic Relax and earlier methods is alternately increasing
and decreasing the strength of the repulsive interactions. As
diagrammed in Fig. 6, Fast Relax is comprised of interlaced cycles
of full combinatorial repacking of the side chains of the protein
(repack) and gradient-based minimization of the backbone and
side chain degrees of freedom (minimize); within each round the
repulsive weight is increased while from the end of one round to
the start of the next (indicated by the arrow) the repulsive weight
is decreased 50-fold. Typically 5–15 rounds of this repulsive
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Fig. 3. Rapid proliferation of Foldit recipes between June 2009 and August 2010. Each different shade of gray represents an individual recipe with the size of
the gray bar denoting how many times that recipe was run that particular week. The most heavily used script recipe is Blue Fuse, shown in yellow. The most
popular GUI recipe is Quake, shown in red, which has been used consistently by Foldit players weekly since its creation.
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Fig. 4. Social evolution of Foldit recipes. Each circle represents a different
Foldit recipe, each color denotes a different author, and the size is the loga-
rithm of the number of times a recipe was used. Arrows represent the process
of copying and subsequent modification: the recipe at the tip of an arrow
was created from the recipe at the base of the arrow. Acid Tweeker v0.5
is the parent of all of the recipes shown here with Blue Fuse its most popular
offspring. The popularity of Blue Fuse led many Foldit players to create their
own modified versions of the recipe.

Khatib et al. PNAS ∣ November 22, 2011 ∣ vol. 108 ∣ no. 47 ∣ 18951

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115898108/-/DCSupplemental/pnas.1115898108_SI.pdf?targetid=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115898108/-/DCSupplemental/pnas.1115898108_SI.pdf?targetid=SF3


weight annealing are applied to a given structure and the lowest
energy structure encountered (only full repulsive weight struc-
tures are eligible) is finally kept as the result.

There is a striking similarity between the Fast Relax algorithm
developed by scientists and the Blue Fuse algorithm developed
by Foldit game players. These similarities are evident in the algo-
rithm comparison shown in Fig. 6. Both algorithms ramp the
repulsive weight up and down while repacking and minimizing
the structure, ultimately selecting as the algorithm output the
lowest energy structure encountered. There are minor differences
—Blue Fuse begins with a low repulsive weight and only performs
a shake before minimizing the structure at the standard weight
while Fast Relax does a repack/minimize cycle at each stage—
but the similarities far outweigh the differences.

The Foldit players’ algorithmic discovery is in a rich tradition
of softening the repulsive forces to enhance sampling in protein
folding calculations. The earliest methods replaced entire subsets
of atoms with simplified centroid side chains (11), and subsequent
methods softened repulsive interactions in full atom representa-
tions (13). Classic Relax expanded on this approach by gradually
ramping up the repulsive term during the course of a simulation.
Through social evolution of recipes, Foldit players independently
rediscovered the utility of initially softening the repulsive inter-
actions. The players went beyond previous approaches by intro-
ducing the sawtooth-like repeated annealing of the strength of
the repulsive interactions as in Fast Relax. This sawtooth profile
likely induces repeated compaction and expansion of the protein
chain, which evidently helps access new energy minima.

Performance Comparison. To determine how the Blue Fuse algo-
rithm compared to both the Classic Relax and Fast Relax proto-
cols, we ran all three algorithms on an in-house standard bench-
mark set consisting of 62 proteins with a range of structural
diversity, including monomeric as well as multimeric structures
with and without ligands. For each protein we included both
native and close-to-native structures as well as nonnative Rosetta
models for a total of 6,758 structures. The CPU time required for
each of the methods can be varied by changing the number of
iterations in the outer loop, and we recorded the average energy
over all of the 6,758 models as a function of CPU time. Fig. 5
shows that the Blue Fuse algorithm (in blue) performs more effi-
ciently than Classic Relax (in red), but not as well as the newer
Fast Relax protocol (in green). Thus, the algorithm encoded in
the most popular player recipe is not only structurally similar
to the Fast Relax but also more efficient than previously pub-
lished Rosetta algorithms.

Rosetta optimizations are simplified to run at interactive
speeds suitable for human exploration in Foldit (SI Text), and
hence Fast Relax in Rosetta utilizes more powerful elementary
optimization modules than Blue Fuse in Foldit. To evaluate the
performance of Fast Relax relative to Blue Fuse–when given ac-
cess only to the simplified optimizations in Foldit that are avail-
able to game players–we encoded the Fast Relax algorithm using
the Foldit script interface. Fig. 7 shows the performance of this
Foldit script version of Fast Relax (in dark green) on the same
benchmark set; although it is still able to sample lower energies
than Blue Fuse, it takes longer to do so. Notably, Blue Fuse out-
performs this Foldit version of Fast Relax for CPU times less than
200 s (Fig. S4), and in practice Foldit players run Blue Fuse for
an average runtime of 122 s (dotted line in Fig. 7, Fig. S4). Thus,
given the tools available in the game, and for the typical times
these tools are used within the game, the player discovered Blue
Fuse algorithm is actually superior to Fast Relax.

We tested other popular recipes (shown in Table S1), but found
none that minimized the energy as quickly as Blue Fuse. Many
recipes yielded lower energies than Blue Fuse but took much
longer to do so. While repeated iterations of Blue Fuse fail to
decrease the energy further, Foldit players discovered that by
combining different recipes together with Blue Fuse, lower ener-
gies can be achieved than with any of them alone; for example, A
Deep Breath in Fig. 5. Again, context dependence is important:
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the authors of A Deep Breath, for example, recommend adding
rubber bands to a protein before running.

Discussion
The introduction of tools for Foldit players to codify their stra-
tegies spawned a flurry of creative activity and the creation of a
remarkable diversity of folding algorithms. This diversity
emerged through the evolution of player recipes over the course
of a year since their introduction. Particularly remarkable is the
convergence of this evolution onto an algorithm similar to one
recently developed by scientific experts over the same period of
time. Both algorithms achieve faster and more effective energy
optimization than previous methods, and within the context of
the game, the player algorithm is the most efficient. Foldit players
have been at a considerable disadvantage compared to scientists
in developing new algorithms as the scripting language only ex-

poses a small fraction of the variables and base algorithms in
the Rosetta codebase. We are now generalizing the scripting
language to allow control over more of these features, and look
forward to learning what Foldit player ingenuity can do with these
additional capabilities. More generally, the explosion of Foldit
algorithms and the convergence on the best algorithm discovered
thus far by scientists highlights the potential of scientific discovery
games for significant contributions to science and technology,
particularly in the creation and formalization of complex pro-
blem-solving strategies.

Materials and Methods
In order to empower the widest possible pool of active players to create
recipes, including those without basic programming skills, we provided two
recipe creation pathways. The first recipe creation tool, provided to Foldit
players in June 2009, was a simple block-based visual programming interface
where different actions are added from a pull-down menu. Available actions
include adding or adjusting the strength of rubber bands (soft constraints
which connect amino acids and pull on them independently of the player),
restoring previous structures (allowing backtracking), and invoking optimiza-
tion methods such as shake and wiggle. Recipes created using this initial GUI
(referred to as GUI recipes) could not utilize conditionals or loops, or modify
certain properties such as the clash importance, which lets players adjust the
strength of the Rosetta atom-atom steric overlap energy term. To support
more advanced recipes, we added a text-based interface, using the Lua script-
ing language (14), to the game in October 2009. In addition to having many
more Foldit actions available, this interface gives players the ability to control
the flow of recipes (using conditionals and loops), allowing for the creation
of much more complex algorithms (these are referred to as script recipes).

We analyzed the evolution and use of Foldit recipes during the CASP9
structure prediction experiment from May–August 2010 (15). Because Foldit
is an online game, we were able to track recipe usage and analyze the recipes
developed and employed by Foldit players during this period.

Availability
Foldit player recipes are available on the Foldit website: http://
fold.it/portal/recipes, with instructions on how to download
them described on the Foldit wiki: http://foldit.wikia.com/wiki/
101_-_Cookbook.
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Fig. 7. Performance comparison between Blue Fuse and Rosetta Fast Relax
protocol using the streamlined Foldit minimization and side chain optimiza-
tion routines. The dark green line shows the performance of Fast Relax
encoded using the Foldit scripting interface. Fast Relax still samples lower
energies than Blue Fuse, but takes longer to do so than Fast Relax in Rosetta.
Blue Fuse is more effective than the Foldit version of Fast Relax on time scales
most compatible with gameplay: the average Blue Fuse runtime during
actual gameplay of 122 s is indicated by the dotted line.
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