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Paramagnetic metal ions generate pseudocontact shifts (PCSs) in nuclear
magnetic resonance spectra that are manifested as easily measurable
changes in chemical shifts. Metals can be incorporated into proteins through
metal binding tags, and PCS data constitute powerful long-range restraints
on the positions of nuclear spins relative to the coordinate system of the
magnetic susceptibility anisotropy tensor (Δχ-tensor) of the metal ion. We
show that three-dimensional structures of proteins can reliably be
determined using PCS data from a single metal binding site combined
with backbone chemical shifts. The program PCS-ROSETTA automatically
determines the Δχ-tensor and metal position from the PCS data during the
structure calculations, without any prior knowledge of the protein
structure. The program can determine structures accurately for proteins of
up to 150 residues, offering a powerful new approach to protein structure
determination that relies exclusively on readily measurable backbone
chemical shifts and easily discriminates between correctly and incorrectly
folded conformations.
© 2011 Published by Elsevier Ltd.
Introduction

The three-dimensional (3D) structure of proteins
is a prerequisite for understanding protein func-
tion, protein–ligand interactions and rational drug
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design. Protein structures can be readily deter-
mined by nuclear magnetic resonance (NMR)
spectroscopy.1 The most difficult part of an NMR
structure determination typically is the assignment
of side-chain chemical shifts and nuclear Over-
hauser enhancement spectroscopy (NOESY) peaks.
This bottleneck can potentially be avoided if
methods for computing high-accuracy structures
from backbone-only NMR experiments can be
developed.2

Pseudocontact shifts (PCSs) are a rich source of
structural information that are manifested as large
changes in chemical shifts in the NMR spectrum
caused by a nonvanishing magnetic susceptibility
anisotropy tensor (Δχ-tensor) of a paramagnetic
metal ion. The PCS (in parts per million) of a nuclear
spin i depends on the polar coordinates ri, Θi and Φi
of the nuclear spin with respect to the Δχ-tensor
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frame of the metal ion and the axial and rhombic
components of the Δχ-tensor:

PCScalci =
1
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The Δχ-tensor defines a coordinate system in the
molecule that is centered on the metal ion and is
fully described by eight parameters (Δχax, Δχrh,
three Euler angles relating the orientation of the Δχ-
tensor to the protein frame and the coordinates of
the metal ion). Therefore, the Δχ-tensor can be
determined using PCS data from at least eight
nuclear spins, provided that the coordinates of the
spins are known.
As PCSs can be measured for nuclear spins 40 Å

away from the metal, they present long-range
structure restraints exquisitely suited to characterize
the global structural arrangement of a protein. Thus,
PCSs have been used very successfully to refine
protein structures,3–5 dock protein molecules of
known 3D structures6–8 and determine the structure
of small molecules bound to a protein of known 3D
structure.9–11 The need for atom coordinates to
determine the Δχ-tensor parameters, however,
makes it more difficult to use PCSs in de novo
determinations of protein 3D structures. All pres-
ently available protein structure determination
software that uses PCS data to supplement conven-
tional NMR restraints requires estimates of effective
Δχax and Δχrh as input parameters.12–15 These are
often difficult to estimate accurately, as they depend
on the chemical environment of the metal ion and
the mobility of the paramagnetic center with respect
to the protein.
The ROSETTA structure prediction methodology16

is well suited for taking advantages of the rich
source of information inherent in PCSs. ROSETTA
de novo structure prediction has two stages—first, a
low-resolution phase in which conformational
space is searched broadly using a coarse-grained
energy function and, second, a high-resolution
phase in which models generated in the first
phase are refined in a physically realistic all-atom
force field. The bottleneck in structure prediction
using ROSETTA is conformational sampling; close-
to-native structures almost always have lower
energies than nonnative structures. For small pro-
teins (b100 residues), ROSETTA has produced
models with atomic level accuracy in blind predic-
tion challenges.17 For larger proteins, however,
structures close enough to the native structure to
fall into the deep native energy minimum are
generated seldom or not at all. This sampling
problem can be overcome if even very limited
experimental data are available to guide the initial
low-resolution search. For example, CS-ROSETTA
uses NMR chemical shifts to guide fragment
selection and constrain backbone torsion angles,
greatly improving the final yield of correctly folded
protein models.18 As ROSETTA in favorable cases is
capable of generating protein structures very close to
experimentally determined structures from se-
quence information alone,19 it is of great interest to
combine ROSETTA with readily accessible experi-
mental data to determine protein structures.
In this paper, we describe the incorporation of

PCS data into ROSETTA. We show that this new
PCS-ROSETTA method can generate accurate struc-
tures for proteins of up to 150 amino acids in length
even from quite limited data sets.
Results

Test set

We tested the new PCS-ROSETTA method (see
Materials and Methods) on a benchmark of nine
proteins for which chemical shifts and PCSs have
been published. ArgN repressor was independently
determined twice with PCS data measured from
paramagnetic metal ions at two different sites. The
proteins were between 56 and 186 amino acid
residues in size, had different folds and had between
82 and 1169 PCSs measured from one to eleven
different metal ions located at a single metal binding
site (Table 1 and Supporting Information Table 1).
Fragments for each protein were selected with CS-
ROSETTA using available chemical shift data and
were used for all calculations. Structures of proteins
with significant sequence similarity to the target
proteins were explicitly excluded from the CS-
ROSETTA database. The exclusion threshold we
used was significantly stricter than that used in the
original CS-ROSETTA study,18 and in the cases
where distant homologs were removed, the final
model quality in our CS-ROSETTA calculations was
worse than previously reported.

Capacity of the PCS score to identify native-like
structures

The PCS score describes a model's agreement with
observed PCS data by calculating the expected PCS
data given the structure. To calculate this, we used a
3D grid search for the metal coordinates coupled
with singular value decomposition for the Δχ-
tensor components to find the optimal match
between calculated and observed data (see Materials
and Methods). The capacity of the PCS score to
identify native-like models was assessed on sets of
3000 CS-ROSETTA structures for each of the nine
test proteins. These test structures were produced



Table 1. Protein structures used to evaluate the performance of PCS-ROSETTA

Targets
Protein Data
Bank ID Nres

a NM
b NPCS

c

PCS-ROSETTA rund CS-ROSETTA rune

RefCS
f RefPCS

grmsdh Convegencei Qj rmsdh Convergencei

Protein G (A) 3GB1 56 3 158 0.61 0.92 0.06 0.80 0.88 33 34
Calbindin (B) 1KQV 75 11 1169 1.46 2.04 0.16 4.96 4.37 35 4
θ subunit (C) 2AE9 76 2 91 1.65 4.35 0.07 8.90 8.75 36 37
ArgNk (D) 1AOY 78 3 222 0.98 2.38 0.08 6.93 5.32 21 21
ArgNl (E) 1AOY 78 2 82 1.03 2.25 0.09 8.01 6.64 21 38
N-Calmodulin (F) 1SW8 79 2 125 2.34 1.85 0.09 4.69 3.68 39 39
Thioredoxin (G) 1XOA 108 1 90 2.58 2.64 0.23 4.98 6.06 40, 41 42
Parvalbumin (H) 1RJV 110 1 106 11.26 10.42 0.20 11.80 11.20 43 43
Calmodulin (I) 2K61 146 4 408 2.80 2.12 0.14 6.35 5.55 44 44
ɛ186m (J) 1J54 186 3 738 20.57 17.54 0.36 15.46 17.23 45 46

a Number of residues.
b Number of metal ions for which PCS data were measured.
c Total number of PCSs measured.
d The structures used to calculate the rmsd values were identified using the combined PCS score and ROSETTA full-atom energy on

the whole protein sequence.
e The structures used to calculate the rmsd values were identified by the ROSETTA full-atom energy on the whole protein sequence.
f Reference to source of chemical shifts in diamagnetic state of the protein.
g Reference to source of PCS data of the protein.
h Cα rmsd (with respect to the native structure) of the structure of lowest score, in angstroms. All Cα rmsd values were calculated using

the core residues defined in Supplementary Table 1.
i Average Cα rmsd calculated between the lowest-score structure and the next four lowest-scoring structure, in angstroms. The rmsd

values were calculated on the whole protein sequence.
j Quality factor Q=rms(PCSi

calc−PCSiexp)/rms(PCSi
exp) calculated on the structure of lowest PCS-ROSETTA score.

k PCS measured with covalently attached dipicolinic acid tag.
l PCS measured with non-covalently bound [Ln(DPA)3]

3−.
m N-terminal 186 residues of the ɛ subunit of the E. coli polymerase III.
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using a reduced fragment set and included native
fragments to ensure that some of the models were
similar to the target structure. The Cα rmsd of the
decoy with the lowest PCS score was always small
(below 2.3 Å) with respect to the target protein (Fig.
1). In addition, for all target proteins for which PCSs
were available from two or more paramagnetic
metal ions, low Cα rmsd values correlated with low
PCS scores. This indicates that the PCS score can be
used not only to identify near-native structures but
Fig. 1. Fold identification by PCSs. We generated 3000 deco
decoys with low rmsd values to the target structure, we red
fragments from the known target structures. PCS scores are plo
(a–j) are as in Table 1. The PCS score correlates with the Cα rm
also to bias conformational sampling toward the
native structure during fragment assembly. Com-
parisons between the ROSETTA low-resolution
energy function and PCS score are shown in
Supporting Information Fig. 1.
PCSs from 11 different lanthanides were available

for calbindin. In order to explore the value of using
PCSs from multiple lanthanides, we rescored the
structures using PCSs from both individual and
multiple lanthanides. Spearman rank correlation of
ys using CS-ROSETTA. In order to ensure the presence of
uced the starting set of peptide fragments and included
tted versus the Cα rmsd to the target structure. The targets
sd.
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PCS score versus rmsd had coefficients ranging from
0.060 to 0.569 (average, 0.377) for single data sets.
Pairwise combination of PCS sets resulted in
increased coefficients ranging from −0.080 to 0.574
(average, 0.459). Using all PCS sets resulted in a rank
correlation coefficient greater than 0.6, showing that
PCSs from multiple metal ions greatly facilitate
identification of native-like protein folds.

Comparison of PCS-ROSETTAwithCS-ROSETTA

We generated 10,000 decoys each with CS-
ROSETTA and PCS-ROSETTA. Both computations
used the same fragment set, taking into account
secondary structure information from chemical shift
measurements. Figure 2 illustrates the ability of the
PCS score to bias sampling toward the native
structure. For seven out of the ten structure
calculations, the PCSs dramatically increased the
frequency with which decoys with low Cα rmsd to
the reference structure were found. The effect was
particularly pronounced for protein targets with
larger PCS data sets. For example, more than a third
of the decoys found for calmodulin had a Cα rmsd
of less than 4 Å to the target structure, whereas
fewer than 3% met this criterion in the absence of
PCS data. Similar results were obtained for the θ
subunit, protein G and both ArgN repressor
calculations. The PCS data did not significantly
improve the results for thioredoxin and parvalbu-
min for which only PCS data from a single
paramagnetic metal ion were available. No native-
like structures were found for ɛ186, which may be
attributed to its larger size (186 residues). To
evaluate the influence of the PCS score during the
fragment assembly, we performed an additional
calculation with the PCS score as the only energy
term (Supporting Information Text 1).
Fig. 2. Improved conformational sampling by PCS-ROSE
trajectories with (black) or without (red) PCS information. Th
structure after the fragment assembly step. The targets are
calculated with full-atom relaxation for positioning the amino
2. The library used for fragment selection explicitly excluded
The figure shows that PCS scores efficiently guide fragment a
The low-resolution models were subjected to full-
atom relaxation refinement in the last step of the
calculation, using the full-atom ROSETTA force field
(without inclusion of the PCS score). The additional
minimization step did not significantly change the
overall shape of the distributions but tended to
improve the Cα rmsd of native-like decoys (Sup-
porting Information Fig. 2) and, most importantly,
allows recognition of the best models based on their
energies.
Rescoring full-atom relaxed structures with a

weighted combination of the ROSETTA and PCS
scores further improved the recognition of near-
native structures as measured by the Cα rmsd of the
lowest-energy structure (Table 1, PCS-ROSETTA
run; Fig. 3), with PCS-ROSETTA identifying low Cα

rmsd (b3 Å) structures in eight out of ten cases. With
the exception of target C, for all successful targets, a
population of the five lowest-energy structures
converge to less than 3 Å, while the two failed
targets do not improve beyond 10 Å (Table 1).
Convergence is a signal that the protocol has found a
topology that reliably satisfies the combined score,
which, in the case of PCS-ROSETTA, clearly
identifies the failed models as unreliable, allowing
for their rejection.18 In the case of target C, large
disordered termini prevent a clear identification of
convergence, but convergence becomes apparent
when only the core residues are considered (Sup-
porting Information Table 2). Results with CS-
ROSETTA and PCS-ROSETTA are compared in
Supporting Information Fig. 3.
Agreement of the structures with the experimental

data can also be directly assessed by the quality
factor Q= rms(PCSi

calc −PCSi
exp)/rms(PCSi

exp),
where PCSi

exp is the experimental PCS value for the
nuclear spin i. A quality factor above 25% indicates
failure to find a correct structure, and a quality factor
TTA. We carried out 10,000 independent low-resolution
e plots show the density of Cα rmsd values to the target
labeled as in Table 1. Corresponding plots of structures
acid side chains are shown in Supporting Information Fig.
any protein with sequence similarity to the target protein.
ssembly toward the correct target structure.

image of Fig. 2


Fig. 3. Energy landscapes generated by PCS-ROSETTA. Combined ROSETTA energy and PCS score [using the
weighting factorw(c)] are plotted versus the Cα rmsd to the target structure for structures calculated using PCS-ROSETTA.
The lowest-energy structures are indicated in red. The targets are labeled as in Table 1. The results show that PCS-
ROSETTA is likely to generate and identify the correct fold.
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below 20% indicates that the computed structure is
in good agreement with the experimental PCSs
(Table 1), as in other definitions of quality factors.20

The low quality factor of the θ subunit (7%)
establishes the success of the calculation despite the
lack of clear convergence.

Successes and limits of PCS-ROSETTA
calculations

The results of PCS-ROSETTA calculations are
summarized in Table 1. The structures of small
Fig. 4. Superimpositions of ribbon representations of the b
PCS-ROSETTA (blue) onto the corresponding target structure
(c) the θ subunit of Escherichia coli DNA polymerase III, (d) the
with covalent lanthanide tag), (e) ArgN with non-covalent lan
thioredoxin, (h) parvalbumin, (i) calmodulin and (j) the globu
Flexible termini were omitted as described in Supporting Inf
parvalbumin (h) and the ɛ subunit (j), as the calculations coul
proteins (b80 residues, targets A to F) are easily
solved by PCS-ROSETTA: the lowest PCS-ROSET-
TA energy is consistently below 2.4 Å in Cα rmsd
relative to the native structure and has a quality
factor below 16%. For these proteins, the generation
of 10,000 models was ample (Fig. 2a–f). The same
number of decoys calculated with CS-ROSETTA did
not lead to satisfactory convergence for targets B to F
(Table 1), though targets C and D partially recover if
flexible termini are removed at the full-atom
rescoring step (Supporting Information Text 2).
The tag used to paramagnetically label ArgN (D)
ackbones of the lowest-energy structures calculated with
s (red). The protein targets are (a) protein G, (b) calbindin,
N-terminal domain of the E. coli arginine repressor (ArgN;
thanide tag, (f) the N-terminal domain of calmodulin, (g)
lar domain of the ɛ subunit of E. coli DNA polymerase III.
ormation Table 1. Only the target structure is shown for
d not reproduce the correct fold for these proteins.

image of Fig. 3
image of Fig. 4


673Protein Structure Determination using PCS-ROSETTA
produced Δχ-tensor axes of significantly different
orientation with different lanthanides,21 which may
explain why the PCS-ROSETTA calculations per-
formed particular well with these data.
PCS-ROSETTA succeeded in calculating the

structure of a protein with 146 residues and PCSs
from multiple lanthanides (target I). More than 62%
of calculated structures had a Cα rmsd below 5 Å,
while only 6.2% met that criterion for CS-ROSETTA
calculation (Fig. 2i). This indicates that the PCS data
score can effectively guide the sampling toward the
correct fold also for larger proteins. While calcula-
tions on target J (186 residues) did not converge
despite a large PCS data set, this can be attributed to
a sampling problem associated with large proteins
of complex topology,19 which may be overcome
with a modified protocol. Importantly, the success
of a calculation can be ascertained from calculating
the quality factor Q. Combined with the conver-
gence criterion,18 the quality factor is an effective
way to assert the success of a calculation (Support-
ing Information Fig. 4). For each of the eight targets
for which the PCS-ROSETTA calculations con-
verged, the structure with the lowest energy is
shown superimposed with the native structure in
Fig. 4.
Discussion

The structural information content of the PCS
effect has long been recognized, but initial attempts
to determine the 3D structures of biomolecules by
the use of PCSs were hampered by the difficulty to
determine Δχ-tensor and structure simulta-
neously.22 Subsequently, the first 3D structure
determinations of proteins relied on nuclear Over-
hauser effect (NOE) data.1 Later attempts to solve a
protein structure without the use of NOEs relied
heavily on a blend of restraints from paramagnetic
NMR effects, including residual dipolar coupling,
cross-correlated relaxation and PCS restraints, and
additional experimental secondary structure
restraints.23 Full structure determination of proteins
from PCS data alone continues to be regarded as
difficult.24 Owing to its modeling capabilities, PCS-
ROSETTA makes it possible, for the first time, to
determine 3D structures using PCSs as the only
restraints while simultaneously determining all Δχ-
tensor parameters and integrating PCSs from differ-
ent metal ions. In addition, a PCS quality factor that
is highly indicative of the correctness of the final
structure can be calculated. The effect of the PCSs on
improving convergence of the calculations toward
the correct target structures is particularly remark-
able if one considers that PCS data mostly were
available only for backbone amides.
The success of PCS-ROSETTA is based on the fact

that, in contrast to scoring functions using chemical
shift data, the PCS score is much more sensitive to
global than local structure. Therefore, PCS data can
guide the search in the low-resolution fragment
assembly step, greatly increasing the yield of near-
native structures compared to CS-ROSETTA. PCSs
thus present an ideal complement to chemical shift
information that is most important in the preceding
fragment selection step. The improved convergence
alleviates the need to compute large numbers of
decoys. It would be possible to accelerate the
computations further by using the PCS score to
select decoys with low rmsd values to the target
structure prior to the computationally expensive
refinement of amino acid side-chain conformations.
Many protein specific factors including fold

complexity, number and quality of PCS data and
metal site play roles in the success of PCS-ROSETTA
fragment assembly, and their relative importance is
difficult to disentangle. In general, PCS data from
two or more lanthanides are expected to assist
identification of decoys with low rmsd to the target
structure. While the structure of calmodulin, a
protein with 146 residues, was successfully deter-
mined by PCS-ROSETTA, the structure of ɛ186 (186
residues) was not found by the program despite the
availability of many PCSs overall (Table 1). The
scarcity of PCS values for residues near the
lanthanide binding site may have contributed to
this effect. As the PCS-ROSETTA protocol did not
sample structures below 10 Å rmsd (Fig. 3j) and as
the energy landscape defined by the PCS scores
became funnel-like only for structures with less than
about 10 Å rmsd to the native structure (Fig. 1j), it is
also conceivable that the conformational space
explored by the basic ROSETTA sampling protocol
needs to be much larger for larger proteins. To
explore the performance of PCS-ROSETTA for large
proteins and proteins that converge poorly with CS-
ROSETTA, we performed test calculations using
simulated PCS data. The results show consistently
improved convergence and identification of correct-
ly folded substructures by PCS-ROSETTA, even
though convergence to structures close to the target
structure remained difficult (Supporting Informa-
tion). An alternative sampling protocol, such as
broken chain sampling25 or iterative refinement,26

may be required for accurate PCS-assisted modeling
of difficult proteins such as ɛ186.
The present calculations were performed with

proteins containing single metal binding sites.
Clearly, data from multiple metal ions using
different metal binding sites will greatly enhance
the information content of PCS data. In particular,
lanthanide ions display very different paramagnetic
properties, while their chemical similarity allows all
lanthanides to bind at a given lanthanide binding
site. Several metal binding tags have recently been
developed to tag proteins site-specifically with a
paramagnetic lanthanide; for a recent review, see
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Refs. 27 and 28. We note that PCSs were as useful for
targets devoid of natural metal binding sites (targets
A, C, D and E) as for metalloproteins (Fig. 2). Rigid
attachment of lanthanides to the protein can be
important as tag mobility may introduce errors in
the computed structure due to the averaging of the
PCS effect, but we note that excellent fits of PCSs to
protein structures can also be obtained in the
presence of substantial tag mobility.29

In conclusion, we propose a new approach to
protein structure determination in which PCS data
are collected from natural or engineered metal
binding sites and then used to guide ROSETTA
conformational search along with backbone chem-
ical shift data. Although ROSETTA calculations are
computationally demanding particularly for larger
proteins, the PCS-ROSETTA method shows im-
proved convergence and is applicable without the
need of time-consuming side-chain resonance as-
signments and NOE measurements. The approach
further allows reliable assessment of the accuracy
and reliability of the lowest-energy models based on
the convergence of the calculation and the PCS
quality factor. In view of the increasing rate with
which specific lanthanide tags are being developed
and commercialized for proteins,30 with multiple
independent lanthanide data sets and improved
conformational search methods, the approach
should be extendable to proteins greater than 150
amino acids when backbone PCS data sets from
three or more lanthanides are available. PCS-
ROSETTA is available free of charges as a module
of the academic release of the ROSETTA program
for protein modeling‡.
Materials and Methods

PCS-ROSETTA score

The PCS (in ppm) induced by ametal ionM on a nuclear
spin can be calculated as31

PCScalci =
1

12kr5i
� Trace½ð 3x2i − r2i 3xiyi 3xizi

3xiyi 3y2i − r2i 3yizi
3xizi 3yizi 3z2i − r2i

Þ
�ðDmxx Dmxy Dmxz

Dmxy Dmyy Dmyz
Dmxz Dmyz Dmzz

Þ� ð2Þ

where ri is the distance between the spin i and the
paramagnetic center M; xi, yi and zi are the Cartesian
coordinates of the vector between the metal ion and the
spin i in an arbitrary frame f; and Δχxx, Δχyy, Δχzz, Δχxy,
Δχxz andΔχyz are theΔχ-tensor components in the frame
f (as Δχzz=−Δχxx−Δχyy, there are only five independent
‡The design is available at http://www.rosetta
commons.org/
parameters). The Δχ-tensor components and the metal
coordinates are initially unknown and must be redeter-
mined each time the PCS score c is evaluated. c is
calculated over all metal ions Mj as

c =
X
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

PCScalci Mj
� �

−PCSexpi Mj
� �� �2

s
ð3Þ

where PCSi
calc (Mj) and PCSi

exp (Mj) are the calculated and
experimental PCS values of spin i induced by the metal ion
Mj, respectively. The determination of the Δχ-tensor
components and the metal coordinates presents a non-
linear least-square fitting problem. In order to avoid local
minima and speed up the calculation, we split the problem
into its linear and nonlinear parts. Equation (2) shows that
PCSi

calc is linear with respect to the five Δχ-tensor
components. With the use of a 3D grid search over the
Cartesian coordinates xM, yM and zM of the paramagnetic
center, singular value decomposition optimizes the five
Δχ-tensor parameters efficiently and without ambiguity
for lowest residual score c at each node of the grid. The
grid node with the lowest c score is then used as the
starting point for optimization of the three metal co-
ordinates along with the five Δχ-tensor components to
reach the minimal cost c.
The PCS score was added to the ROSETTA low-

resolution energy function using a different weighting
factor w(c) for each structure calculation. w(c) was
determined by first generating 1000 decoys with ROSET-
TA and calculating w(c) as

w cð Þ = ahigh − alow
chigh − clow

ð4Þ

where ahigh and alow are the average of the highest and
lowest 10% of the values of the ROSETTA ab initio score,
and chigh and clow are the average of the highest and lowest
10% of the values of the PCS score c upon rescoring each of
the 1000 decoys with the PCS. The weights used for the 10
structure calculations performed in the present work are
given in Supporting Information Table 1.

PCS-ROSETTA algorithm

PCS-ROSETTA uses the ROSETTA de novo structure
prediction methodology to build low-resolution models,
followed by all-atom refinement using the ROSETTA
high-resolution Monte Carlo minimization protocol. The
additions to the standard ROSETTA structure prediction
methods are as follows: the use of chemical shifts to guide
fragment selection as in CS-ROSETTA, the use of PCS data
to guide the initial low-resolution search and the use of
PCS data for final model selection. A flow diagram of the
computational protocol of PCS-ROSETTA is shown in
Supporting Information Fig. 5.

Input for PCS-ROSETTA

The backbone 1H, 13C and 15N diamagnetic chemical
shifts of all protein targets, with exception of thioredoxin
for which only 1H and 15N chemical shifts were available,
were taken from the literature or from the Biological
Magnetic Resonance Bank (Table 1 and Supporting

http://www.rosettacommons.org/
http://www.rosettacommons.org/
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Information Table 0). CS-ROSETTA was used for frag-
ment selection. CS-ROSETTA reports the difference
between experimental and expected chemical shifts.
Chemical shifts with very large deviations from expecta-
tions (often attributable to errors in the deposited data)
were removed from the input. CS-ROSETTA also suggests
corrections in the chemical shift referencing. We only
corrected 13C chemical shifts, except for thioredoxin
where 15N chemical shift was corrected (Supporting
Information Table 1). CS-ROSETTA aims to generate 200
nine-residue fragments and 200 three-residue fragments
centered on each residue of the polypeptide chain for use
in the ab initio fragment assembly protocol of ROSETTA.
In cases where CS-ROSETTA failed to generate 200
fragments, we generated additional fragments using the
conventional ROSETTA protocol in order to make 200
fragments available. For each of the target proteins, we
removed any protein with recognizable sequence similar-
ity (BLAST E-value below 0.05) from the CS-ROSETTA
protein database. E-values were computed against the CS-
ROSETTA sequence database, which is approximately 500
times smaller than the nonredundant database used by
Shen et al.18 Since E-values scale with database size, this
results in a much stricter homology threshold and is
equivalent to an E-value of approximately 25 if the
nonredundant database of Shen et al. had been used. In
order to accelerate the grid search for the metal position,
PCS-ROSETTA allows a precise description of the space to
be searched, including the center of the grid search (cg),
the step size between two nodes (sg), an outer cutoff
radius (co) to limit the search to a minimal distance from cg
and an inner cutoff radius (ci) to avoid a search too close to
cg. A moderately large step size (sg) was chosen to speed
up computations during low-resolution sampling (Sup-
porting Information Table 1) and reduced to 25% of its
value during the final high-resolution scoring step to
ensure maximum accuracy. For each target, the grid
parameters cg, co and ciwere chosen in accordance to prior
knowledge about the approximate metal binding site. For
example, for a covalent tag attached to the protein, we
used the known geometric information of the tag to set cg,
co and ci, whereas for proteins with a natural metal
binding site, a highly conserved negatively charged
residue was picked as a reference point for cg. In the
absence of prior biochemical information, the nuclear spin
with the largest absolute PCS value was chosen as the
center of the grid. Supporting Information Table 1
summarizes the grid parameters used for the different
protein targets. In order to assess the impact of the initial
grid parameters on the structures calculated, we per-
formed a set of PCS-ROSETTA calculations for each target,
where cg was centered at the nuclear spin of the largest
PCS observed and where the cutoff radius co was set to
15 Å. No change in the quality of the results was observed,
but in most cases, the calculations took longer.
PCS-ROSETTA protocol for protein structure
determination

Chemical shifts of the proteins were prepared in Talos
format32 and used by CS-ROSETTA for fragment selection.
Chemical shift corrections, fragment selection and determi-
nation of the weights w(c) were performed as described
above. We computed 10,000 protein structures with PCS-
ROSETTA and subjected them to the full-atom relaxation
protocol of ROSETTA to model the side-chain conforma-
tions. The final structures were rescored using the ROSET-
TA full-atom energy function combinedwith the PCS scores
c, using the weighting factors w(c) [Eq. (4)] with ahigh and
alow calculated against the ROSETTA full-atom energy and
with a total weight multiplied by 2 to give a larger
contribution to the PCS score than in the fragment assembly.
The best scoring structures can be assessed by the PCS
quality factor Q=rms(PCScalc−PCSexp)/rms(PCSexp).
Computation of 10,000 PCS-ROSETTA structures took on
average 137CPUdaysper target (approximately three times
longer than CS-ROSETTA calculations) and was run on a
local cluster. Supporting Information Fig. 6 shows a poster-
iori that 1000 structures per targetswould have been enough
for convergence of the protocol.

Computation of structures to evaluate the effects of
PCS scoring

We generated 3000 decoys with a wide range of rmsd
values to the target structure by including the native
fragment and limiting the number of alternatives frag-
ments in the fragment generation step of the ROSETTA
calculations. We calculated 1000 decoys each using two,
five and ten fragments per residue, respectively. The
presence of the native fragments in a small pool of
fragments ensured the generation of structures very
similar to the target structure.
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