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ABSTRACT B-sheet proteins have been particu-
larly challenging for de novo structure prediction
methods, which tend to pair adjacent B-strands into
B-hairpins and produce overly local topologies. To
remedy this problem and facilitate de novo predic-
tion of B-sheet protein structures, we have devel-
oped a neural network that classifies strand-loop-
strand motifs by local hairpins and nonlocal
diverging turns by using the amino acid sequence as
input. The neural network is trained with a represen-
tative subset of the Protein Data Bank and achieves
a prediction accuracy of 75.9 + 4.4% compared to a
baseline prediction rate of 59.1%. Hairpins are pre-
dicted with an accuracy of 77.3 = 6.1%, diverging
turns with an accuracy of 73.9 = 6.0%. Incorporation
of the B-hairpin/diverging turn classification into
the ROSETTA de novo structure prediction method
led to higher contact order models and somewhat
improved tertiary structure predictions for a test
set of 11 all-B-proteins and 3 aB-proteins. The B-hair-
pin/diverging turn classification from amino acid
sequences is available online for academic use (Mei-
ler and Kuhn, 2003; www.jens-meiler.de/turnpred.
html). Proteins 2004;54:282-288.
©2003 Wiley-Liss, Inc.

Key words: artificial neural network; protein sec-
ondary structure prediction; g-hairpin;
ROSETTA; protein tertiary structure
prediction; fragment replacement

INTRODUCTION

The output of genome-sequencing projects is far greater
than the output of experimental protein structure determi-
nation. As of September 2002, the Protein Data Bank
(PDB) contained 16,921 protein structures, compared to
114,033 sequence entries in SWISS-PROT.?® Hence, there
is a great need for accurate protein structure prediction
methods. Protein structure prediction has been addressed
on multiple levels, from secondary structure prediction
through supersecondary structure motif recognition to the
prediction of three-dimensional structures. The prediction
of secondary structure with artificial neural networks has
a long tradition*~® with the most powerful recent methods
using neural networks on multiple-sequence alignments
produced by PSIBLAST. Some approaches to predict super-
secondary motifs have aimed at predicting a number of
different motifs at once,® ' whereas others focus on
special structures such as B-turns.'? 14

© 2003 WILEY-LISS, INC.

The information gained by the prediction of supersecond-
ary structure can be used in tertiary structure prediction
(e.g., in fold recognition'®!® and structure assembly!'?).
ROSETTA,'® one of the most successful current ap-
proaches to tertiary structure prediction,!® generates a
distribution of plausible local conformations for each seg-
ment of the chain by searching the PDB for fragments with
similar local sequences. These fragments define the acces-
sible conformational space of the sequence at a particular
position. The accessible conformational space of the com-
plete chain is searched by a Monte Carlo algorithm. At a
randomly selected position of the chain, one randomly
selected fragment from the fragment list at this particular
position is inserted and the change in the low-resolution
energy function dominated by hydrophobic burial and
strand pairing is evaluated. Structure predictions are
made carrying out many independent simulations and
detecting broad minima on the energy landscape by cluster
analysis.

ROSETTA has difficulties generating accurate models
for proteins with primarily nonlocal contacts. A measure of
the balance between local and nonlocal contacts is the
contact order, which is defined to be the average sequence
separation of the amino acids that are in contact. Indeed,
populations of structural models generated by ROSETTA
contain an excess of low-contact order structures.?® Con-
tacts between residues close in the sequence can be
identified relatively rapidly and are not disrupted by most
subsequent fragment insertions; thus, low-energy local
interactions are formed and maintained at the expense of
nonlocal energy minima. That there is a correlation be-
tween contact order and protein-folding rates: proteins
with a high-contact order fold more slowly than low-
contact order proteins.

A structural motif that is formed in excess in ROSETTA
simulations is the B-hairpin. To minimize the energy, the
optimization algorithm often pairs adjacent B-strands to
form a strand-hairpin-strand motif. In ROSETTA models,
about 80% of all adjacent B-strands are connected by a
hairpin, whereas this ratio is close to 60% in native
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Fig. 1.

structures. If it were possible to predict whether a hairpin
is present, the formation of hairpins could be selectively
disallowed. By reducing the degrees of freedom in the
conformational space, an incentive for the formation of
long-range contacts could be provided. This could increase
the yield of higher contact order structures with poten-
tially the correct overall topology.

Toward this end, in this article we develop a neural
network-based method for predicting whether a strand
loop strand motif adopts a hydrogen-bonded B-hairpin or a
non-hydrogen-bonded diverging turn in which the two
strands are paired with other strands (see Fig. 1). The
predictions are then incorporated into the ROSETTA
tertiary structure prediction method by penalizing the
formation of B-hairpins in regions predicted to form diverg-
ing turns. Although the network overpredicts turns, it is
quite successful in distinguishing between hairpins and
diverging turns, and the predictions increase the contact
order and accuracy of ROSETTA tertiary structure predic-
tions.

MATERIALS AND METHODS
Data Sets and Turn Classification

A database of proteins was compiled with structures of
resolution > 2.5 A and < 50% sequence identity.?" It
contains 2209 proteins, with a total of ~550,000 residues.
Turns in the database are detected and classified by using

lllustration of hairpins and diverging turn. The first four strands of the immunoglobulin fold 1fna_ are
shown. Strands 1 and 2 and strands 3 and 4 form hairpins while the turn between strands 2 and 3 is a diverging
turn.

DSSP?2 output files. These contain secondary structure
information and B-bridge partners of B-strand residues. A
chain segment connecting two B-strands is considered a
turn if it does not contain any B-strand or a-helix residues.
If the adjacent strands are connected by one or more
hydrogen bonds, the turn is classified as hairpin. Other-
wise, if no B-bridges are recognized, the turn is considered
to be a diverging turn. With this limitation, 5151 hairpins
and 3905 diverging turns are detected in the database.

Prediction Method

Because the sequence signals at the N- and C-termini of
turns have different properties and turns have variable
lengths, we decided to build two separate neural networks
for predicting the state of the first residue in a turn and the
state of the last residue, respectively (Fig. 2). Each ANN
predicts whether the considered residue is the first/last
residue of a hairpin, diverging turn, or neither.

The input window of both neural networks contains 12
amino acids. The first network is trained to predict “begin-
ning of a turn” if the true beginning of the turn is at the
fifth position of the input window (subscript “b” in the
following discussion). The second network predicts “end of
turn” if the true end of the turn is at the eighth (fifth to
last) position in the sequence window (subscript “e”). This
ensures that turns up to the length of eight are presented
completely in the input window. For example, if the
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protein chain beginning end of turn . combined one letter
of turn ' prediction prediction
# AAlInput hy, dy Ny h, dy n ' p(h) p(d) p(n) pred real
61 i 0.00 0.39 0.61 0.44 0.36 0.20 ' 0.62 0.25 0.12 n E
621V 0.05 0.20 0.75 0.34 0.02 0.64 ' 0.64 0.02 0.35 n E
63| E 0.00 0.49 0.51 0.14 0.39 0.47 ! 0.00 0.70 0.30 n E
64| F 0.15 0.57 0.28 0.07 0.17 0.77 ' 0.13 0.72 0.15 n E
651 E 0.18 0.75 0.07 0.08 0.22 0.70 ' 0.14 0.81 0.05 d d
66[ P —p{0.18 0.77 0.06 0.02 0.02 0.95| i [0.14 0.82 0.04 d d
67K 0.15 0.59 0.26 0.00 0.13 0.87 H 0.14 0.82 0.04 d d
68 | E | 0.03 0.23 0.74 0.00 0.37 0.63 \:\ 0.14 0.82 0.04 d d
69A Fla 0.11 0.00 0.89 |—p» |[0.00 0.34 0.66 H 0.14 0.82 0.04 d d
701 G g E 0.03 0.25 0.72 0.00 0.91 0.09 ' 0.14 0.82 0.04 d d
711 D EI o 0.00 0.28 0.72 0.09 0.79 0.12 | 0.14 0.82 0.04 d E
721Y a s 0.00 0.17 0.83 0.10 0.87 0.03 ! 0.14 0.82 0.04 d E
73 | Vio o 0.00 0.23 0.77 0.07 0.84 0.08 ' 0.12 0.81 0.07 d E
74 1 0.02 0.00 0.98 0.08 0.27 0.65 ' 0.14 0.51 0.35 n E
75 N 0.01 0.06 0.93 0.00 0.34 0.66 1 0.28 0.28 0.43 n E
76 L 0.03 0.03 0.93 0.06 0.12 0.81 1 0.28 0.28 0.43 n E
77 T 0.25 0.40 0.35 0.00 0.29 0.71 , 0.54 0.24 0.22 n E
78 L 0.93 0.01 0.06 0.02 0.00 0.88 H 0.91 0.01 0.08 h E
79 D 0.10 0.32 0.58 0.02 0.00 0.98 ! 0.91 0.01 0.08 h C
80 G 0.07 0.00 0.93 0.26 0.26 0.48 ' 0.9t 0.01 0.08 h C
81 D 0.30 0.44 0.26 0.90 0.00 0.10 ' 0.91 0.01 0.08 h C
1
1
1

a) Prediction with two Artifical Neural Networks b) Combination of Raw Output

Fig. 2. lllustration of the prediction procedure (residues 61-81 of 1ksr). a: The box around the amino acid
identifiers represents the input window that is moved over the protein chain. The PSIBLAST profile and
PSIPRED secondary structure prediction are used as input for the Atrtificial Neural Networks that predict the
beginning and end of turns. The fifth residue of the input window is predicted as potential beginning of a turn,
and the eighth residue as potential end of a turn. This is done for the whole sequence. n, is the predicted
probability that a residue is not the beginning of a turn, n, the probability that a residue is not the end of a turn. b:
Raw predictions are combined to yield a three-state prediction (hairpin, diverging turn, and no turn); for details
see text. On the right side, the one-letter prediction is compared with the real (super) secondary structure. The
real diverging turn is correctly identified (bold type); however, a non-existing hairpin is predicted (italic type).

beginning of a two-residue hairpin is considered, the p(h,i...j) = [1 — p(n, i...j)]
window would consist of four-strand residues, followed by . . . . . .
the two-turn residues and six residues of the adjacent * [hp(@) + he(PVThy(@) + he(G) + dypd) + de(j)]
strand. If the frame is shifted so that another residue of
the turn is to be predicted, the ANN is supposed to predict  p(d, i...j) = [1 — p(n, i...j)]
“no turn.”

A total of 23 numerical inputs is used for each amino *[dp() + de(PI/[hy() + he(G) + dp(@) + de()]
acid: the PSIBLAST profile (position-specific score matri-
ces, 20 inputs, as used by Jones for secondary structure  For all possible turn lengths of up to eight residues in the
prediction)®® and the PSIPRED secondary structure predic-  protein sequence, these probabilities are calculated by
tion (three inputs).” PSIPRED also uses the PSIBLAST averaging the results of the prediction for the first and last
profile as input but is trained over a large data set  yegidue of the turn (36 possibilities for each residue). This
containing all secondary structure types and thus addition- averaged probability is assigned to all residues in the turn.

ally provides valuable information for the turn prediction. g each residue, the highest turn probability assignment
Both ANNs are of feed-forward architecture and have of those 36 possibilities is kept as the final output of the

12 X 23 = 276 inppts, 15 hidden neurons, and'3 9utput prediction method (Fig. 2).

neurons representing the probabilities for hairpin (h), . . .
diverging turn (d), and no turn (n). The network B, In a final step, a one-letter code is derived by assigning
e T > & ot - L€ NELWOrKS Were 41 e small letters & or d to amino acids with predicted

i k- ion?* with a 1 i f .. . . e
trained by back-propagation™ wit a learnng rate o hairpin or diverging turn probabilities > 0.75. All other
0.0001 and a momentum term of 0.5 with a training set of . . 2
amino acids remain in the state n. Note that not the

rlr?a?r?cep?g;e;nrioril‘;z?rl;gs ;:aosf ;g%piigtgriegezﬁi elc)ie.!r{‘fe one-letter code but thfa three-state probabilities are used

number of hidden neurons was optimized to yield the best for all further calculations. o
performance in predicting the monitoring set of data. Other approaches, such as the prediction of all turn
Subsequently, the per residue predictions h,(i), d,(i), residues instead of just the first and last residue and
n,(i) and h.(i), d (i), n (i) are combined to derive turn training specialized networks for specific turn lengths,
probabilities p(x, i...j) for turn type x beginning at residuei ~ Were tested. Isolated results were promising; however, it
and end residue j: was not possible to combine predictions for the various
turn lengths. It also proved difficult to predict the length of

p(n, i...j) = [ny,(i) + n.j)]/2 turns with a single neural network.
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Fig. 3. Histogram of prediction confidence showing the relationship between the confidence of the
prediction and the prediction accuracy. The x axis is the hairpin probability minus the diverging turn probability.
Itis evident that the greater the bias of the prediction toward one of the two turn types, the smaller the chance of
misclassification. Error bars are the standard deviation across 10 evaluations of the independent data set with
differently trained prediction networks. The large peak corresponding to a difference of zero results both from
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ambiguous turn sequences and real turns that were not detected.

Assessment of Prediction Performance

The accuracy of the prediction was assessed by cross-
validation: The complete data set (2000 proteins) was split
into 10 parts, and each of these was used to monitor
training over the remaining 1800 proteins. All ANN were
tested against the monitoring set they had been trained
with and against an independent data set containing 209
proteins. The prediction networks used for tertiary struc-
ture prediction were trained with the whole training data
set, using the independent data set as monitoring set.

The classification of turns was evaluated by averaging
the prediction results over all turn residues. In this
fashion, all real turns were classified as either hairpin or
diverging turn. Two performance measures were calcu-
lated: accuracy and confidence. Accuracy (Q,) is defined as
the fraction of real turns that have been correctly classi-
fied. Confidence (Q,) is the fraction of predicted turns that
are correct predictions. In the example of hairpin accuracy
and confidence, if ¢ is the number of correctly classified
hairpins, d the number of hairpins that have been classi-
fied as diverging turn, and h the number of diverging turns
that have been predicted as hairpin, Q, = c/(c + d) and
Q. =c/(c + h).

Scoring Function

To score structural models generated with the RO-
SETTA program, hairpins that are predicted by RO-
SETTA are penalized with the goal of reducing the excess
of wrongly predicted hairpins. First, B-strands separated
by less than nine turn residues are identified by using
secondary structure information from the fragments used
to generate the structure. If a conformation contains a

hairpin in a region predicted to be diverging turn, a
penalty is added to the standard ROSETTA score.?® The
probability that the move that created the hairpin will be
accepted is thereby reduced. The penalty is proportional to
the length of the shorter strand and the difference between
the two turn probabilities. With 1; and 1, the lengths of the
adjacent strands and p(h) and p(d) the predicted probabili-
ties for hairpin/diverging turn, the penalty is min(l;, 1,) -
max(0, p(d) — p(h)). Using the difference between the
probabilities for diverging turn and hairpin is based on the
fact that a larger difference corresponds to a greater
confidence (see Fig. 3). On the other hand, if a hairpin is
predicted as hairpin, no score is given, so as not to
encourage the formation of hairpins.

Evaluation of the Hairpin Penalty

Fourteen proteins were used to explore the possibility of
using the hairpin/diverging turn prediction in protein
structure prediction. These proteins are all-B- and of-
proteins out of a data set that is used to benchmark
ROSETTA. Care was taken to remove close homologues
(>50% sequence identity) from the set of proteins used for
training the neural networks. There are 11 all-B- and three
ap-proteins, with sequence lengths between 58 and 121.

Two sets of 10,000 structural models were generated for
each protein, using ROSETTA both with and without the
hairpin penalty. In preliminary tests, the weight of the
score was varied over a wide range to find an optimal
balance relative to the standard energy function.

The 10,000 generated models are split up into 10 sets of
models containing 1000 structures. For each of these 10
sets, first-percentile root-mean-square deviation (RMSD)
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TABLE L. Prediction Results by Residue

Monitoring data set Independent data set
prediction (%) prediction (%)

Structure Turn No turn Turn No turn
Turn 6.4 +0.7 04=+01 7.1+02 0.5+0.0
No turn 322+20 610+x48 347+13 57.7+0.8
Diverging Diverging

Hairpin turn Hairpin turn
Hairpin 400+52 151*x15 418=+0.7 17.0=*0.6
Diverging

turn 90+14 36029 87+09 325*+09

TABLE II. Prediction Results by Turn

Monitoring data set Independent data set
prediction (%) prediction (%)
Diverging Diverging
Structure Hairpin turn Hairpin turn
Accuracy 782+65 744*69 T13x61 73960
Confidence 799*+6.7 724*+67 811*+64 693=*56

to native and the fraction of structural models within 5% of
native contact order were determined as quality measures.
Because the creation of structural models with the Monte
Carlo method is a random process, variations in the
prediction results are expected. Calculating the standard
deviation over different prediction results makes it pos-
sible to judge whether the observed changes of the results
are significant.

RESULTS
Prediction of Turns

Predictions were made for turns of one to eight residues,
which covers ~75% of all strand-loop-strand patterns.
Both the length and type of turns were determined by
using DSSP.?2? Thus, a turn is regarded as a hairpin if
DSSP recognizes residues in the adjacent B-strands as
being connected by B-bridges. Otherwise, the turn is
considered as diverging turn.

Ideally, the prediction of turns could be used to detect
the location of turns and to classify the detected turns. As
indicated in Table I, only the second aim was achieved.
Given any real turn, it is correctly classified as hairpin or
diverging turn with 75.9 * 4.4% probability (Table II).
This is well above the “baseline” of 59.1%, the fraction of
turns that would be correctly “classified” if all turns were
predicted as hairpins. Hairpins are predicted with an
accuracy of 77.3 = 6.1% and diverging turns with 73.9 +
6.0%. Figure 3 shows the trade-off between confidence and
the fraction of turns that are predicted with that confi-
dence.

Despite the good distinction rate between turns, too
many turns are predicted. This bias was introduced pur-
posely to ensure that all real turns are reliably classified.
During tertiary structure prediction, all turn regions
present in the native structure need to be scored correctly.
For this reason, it is important to detect as many native
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turns as possible. This is achieved at the cost of predicting
too many turns. However, this overprediction has little
negative effect on tertiary structure prediction: predicted
turns are solely used to penalize modeled hairpins that are
in the wrong place. Thus, the only effect of overpredicting
turns is to discourage the formation of hairpins in places
where the native structure has no turn at all.

The rather high-sequence identity level of 50% within
the protein database used for training the neural networks
does not bias the prediction toward higher success rates as
is shown by repeating the calculations with a sequence
identity cutoff of 25%. Besides the somewhat larger stan-
dard deviation (as expected for smaller data sets), the
overall success rate remains with 74.6 + 5.3% unchanged
within the limits of the standard deviation.

Protein Structure Prediction

Based on the prediction of hairpins and diverging turns,
a scoring function was developed and used during protein
structure prediction with ROSETTA. Although the predic-
tion classifies turns with high accuracy, the location of
turns is unclear. Structural models for the same protein
often differ in secondary structure, both in location and
type of the secondary structure segments. It proved to be
disadvantageous to reward formation of turns in regions
they are predicted, because this provided an incentive for
the formation of turns. Structural models generated with
this full scoring indeed contained an excess of turns:
extended loop regions with ambiguous secondary struc-
ture prediction were often turned into B-strands. For this
reason, the scoring was limited to hairpins. This finding
addresses a major shortcoming of ROSETTA: the overpre-
diction of hairpins. Every hairpin in the given structural
model receives a penalty if a diverging turn is predicted for
that location. The score is proportional to the confidence of
the prediction and the length of the shorter B-strand (see
Materials and Methods).

Table ITI shows a comparison between models generated
by using standard ROSETTA and ROSETTA with the
hairpin penalty. The RMSD to native in the test set of 11
all-B-proteins is improved for five proteins (laboA, 1fna,
1gvp, 1ksr, and 2nem, improvements from 0.5 to 2.2 A), is
unchanged for four proteins (1c90A, 1danT, 1tuc, and 1tul,
with deviations up to 0.3 A), and becomes slightly worse
for two proteins (1vie and 1who) with poor hairpin predic-
tions. In aB-proteins, a slight (but still significant) improve-
ment is observed for 2sak and 2tgi. 4ubpB does not change
significantly. Even though this test set is far from compre-
hensive, the improvements in the predictions are encourag-
ing.

The new method penalizes the formation of hairpins in
specific parts of the chain. This would be expected to
reduce the excess of overly local structures consisting
primarily of hairpins. Indeed, with the hairpin penalty,
higher contact order (CO) models are generated than with
standard ROSETTA (Fig. 4). As shown in Table III, a
significant increase in the fraction of models within 5% of
the native CO is observed in all but two cases.
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TABLE III. Effect of Hairpin Penalty on ROSETTA Simulations

ANN Results of structure prediction with ROSETTA

Protein Predicted/Real RMSD to native (A)? Models with native COP
diverging Plain With hairpin Plain With hairpin

PDB N Yoo %R hairpin turn ROSETTA score ROSETTA score
laboA 58 5% 50% 2/2 11 79+03 57+0.3 17.6 = 0.8% 24.4 + 1.6%
1c9A 66 5% 62% 3/3 0/0 38*+0.1 39+0.1 271+ 1.7% 274+ 11%
1danT 75 5% 57% 2/2 2/2 88 +0.2 89+ 0.2 13.2 + 1.4% 13.3 £ 1.0%
1fna_ 91 0% 46% 12 2/2 62+03 55=+0.3 8.6 +0.8% 13.8 + 1.1%
1gvp_ 87 T% 46% 2/3 3/3 9.7+0.2 9.0+0.3 20.6 = 1.4% 27.6 = 1.2%
1ksr_ 92 0% 41% 11 2/2 83+0.1 7802 16.0 + 1.1% 21.7+12%
1tuc_ 61 5% 44% 2/3 0/0 56 +0.2 54+02 334 *+1.3% 374+ 1.6%
1tul_ 102 T% 51% /1 4/5 10.0 = 0.2 9.7+0.3 0.5+ 0.2% 1.4 + 0.5%
lvie_ 60 5% 43% 0/3 11 7102 74+02 89+ 0.7% 192 + 1.1%
1who_ 94 0% 50% 2/4 1/4 77+02 81+02 3.5 *+0.4% 6.7+ 0.8%
2ncm_ 96 0% 55% 3/3 5/5 85+05 75*+03 0.2 +0.1% 2.6 = 0.7%
2sak_ 121 10% 45% 2/2 3/3 13.2 £ 0.2 125 +0.2 0.7+ 0.3% 1.9 + 0.3%
2tgi_ 112 21% 41% /1 4/4 13.3+0.1 125 +0.2 8.8 £ 0.9% 12.9 = 1.0%
4ubpB 103 17% 32% 0/1 4/5 11.1 =03 11.1 0.2 7.8 = 1.5% 10.5 = 0.8%

*“RMSD to native Ca position of the 10" best model out of 1000 generated.

PFraction of models that have a contact order with in a range of +5% of the contact order of the native fold.

3000

M plain Rosetta

2500 Owith hairpin score

2000

1500

count

1000

500

0
15 16 17 18 19 N 21 22 23 24 25

contact order

Fig. 4. Distribution of contact order in 10,000 generated structural
models for 1abo_. The caption “N” on the abscissa corresponds to the
native contact order of 20.3. The hairpin penalty enhances sampling of
structures with higher contact order.

DISCUSSION

It is unclear to what extent our method for predicting
whether a strand-loop-strand segment will adopt a B-hair-
pin or a diverging turn can be improved. The major
limitation is its strictly local nature. Local properties
clearly have a large influence on the nature of turns, as the
reasonable level of success of our method shows. Nonethe-
less, a number of turns will have “flexible” sequences that
can form both hairpins and diverging turns. Indeed, some
examples of sequence homology between hairpins and
diverging turns have been observed in the database, and
the turn prediction is ambiguous for a significant fraction
of turns. Here, the global folding of the rest of the protein
has a tremendous influence on local structure. Because the

formation of secondary and tertiary structure during
protein folding is interdependent,?® it will never be pos-
sible to accurately predict secondary and supersecondary
structure without predicting tertiary structure at the
same time.

Recently, de la Cruz et al.2” published another approach
for the identification of hairpins. To identify hairpins,
strand-loop-strand patterns are identified by secondary
structure prediction with PHD.® These potential hairpins
are matched against a database of complete strand-loop-
strand patterns known to form hairpins. By using a
scoring scheme and an artificial neural network, the
number of strong matches is calculated. The strand-loop-
strand pattern is identified as hairpin if this number is
above a certain threshold.

The approach of de la Cruz et al. is not limited to turns of
a certain length because it uses a scoring scheme against a
database of hairpins. For this reason, it is not restricted to
75% of all strand-loop-strand patterns, as our approach is.
By using secondary structure prediction to identify poten-
tial hairpins, de la Cruz et al. miss about 50% of all
hairpins. Using the native secondary structure to identify
potential hairpins, they were able to correctly identify
64.2 * 8.3% of all hairpins and 65.8 * 6.7% of all diverging
turns. The method presented in this article correctly
classifies 77.3 = 6.1% of all hairpins and 73.9 = 6.0% of all
diverging turns up to length eight, without relying on
information about the native secondary structure. The
database method’s prediction performance drops to 30.1 *
7.9% for hairpins when the predicted secondary structure
is used. The accuracy of the prediction method presented
in this article is higher, which is at least partly a result of
the limitation in turn length: shorter turns can be expected
to show more significant sequence signals. The higher
level of confidence with the current method makes it more
straightforward to apply it tertiary structure prediction.
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CONCLUSION

The results presented in this article show that it is
possible to distinguish between hairpin and diverging
turns with 75.9 = 4.4% accuracy. The accuracy of predict-
ing ends of strands reached by current secondary structure
prediction methods is not high enough to reliably identify
strand-loop-strand motifs de novo. Our method cannot
alleviate this problem and focuses on the classification
hairpin/diverging turn. Based on this classification, a score
was introduced into the de novo protein structure predic-
tion algorithm ROSETTA that selectively disallows local
structures. In turn, higher contact order structures are
sampled. This modification was shown to improve predic-
tions made by the ROSETTA algorithm in 50% of the 14
all-g and «f topologies analyzed.
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