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ABSTRACT The role of local interactions
in protein folding has recently been the subject
of some controversy. Here we investigate an
extension of Zwanzig’s simple and general model
of folding in which local and nonlocal interac-
tions are represented by functions of single and
multiple conformational degrees of freedom, re-
spectively. The kinetics and thermodynamics of
folding are studied for a series of energy func-
tions in which the energy of the native structure
is fixed, but the relative contributions of local and
nonlocal interactions to this energy are varied
over a broad range. For funnel shaped energy
landscapes, we find that 1) the rate of folding
increases, but the stability of the folded state
decreases, as the contribution of local interac-
tions to the energy of the native structure in-
creases, and 2) the amount of native structure in
the unfolded state and the transition state vary
considerably with the local interaction strength.
Simple exponential kinetics and a well-defined
free energy barrier separating folded and un-
folded states are observed when nonlocal interac-
tions make an appreciable contribution to the
energy of the native structure; in such cases a
transition state theory type approximation yields
reasonably accurate estimates of the folding rate.
Bumps in the folding funnel near the native state,
which could result from desolvation effects, side
chain freezing, or the breaking of nonnative con-
tacts, significantly alter the dependence of the
folding rate on the local interaction strength: the
rate of folding decreases when the local interac-
tion strength is increased beyond a certain point.
A survey of the distribution of strong contacts in
the protein structure database suggests that evo-
lutionary optimization has involved both kinetics
and thermodynamics: strong contacts are en-
riched at both very short and very long sequence
separations. Proteins 29:282–291, 1997.
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INTRODUCTION

The role of local interactions in protein folding has
been the subject of considerable debate over the last
year. A number of recent theoretical studies have
argued that folding is optimized when local inter-
actions make a relatively small contribution to the
energy of the native state. Fersht1 argued from
simple transition state theory that folding rates are
maximized when few interactions are made before
the rate-limiting transition state. The argument is
that even native local interactions lower the free
energy of the unfolded state and thus increase the
size of the barrier that must be climbed to reach the
transition state relative to what it would be if all
interactions were formed at the transition state.
Govindarajan and Goldstein2 argued that ‘‘optimal
conditions for folding’’ are obtained when local inter-
actions are weak by using a simple lattice model in
conjunction with techniques drawn from spin glass
theory: increasing the strength of local interactions
was found to increase the roughness of the energy
landscape. Abkevich et al.3 found that structures
with substantial numbers of nonlocal interactions
folded significantly faster than structures with pri-
marily local interactions at temperatures in which
the native states were stable. In contrast to these
conclusions, Unger and Moult4 found that the greater
the strength of local interactions, the more foldable a
sequence in a simple lattice model.

To investigate the rather discordant conclusions
reached in these studies, we studied an extension of
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Zwanzig’s simple model of protein folding.5,6 The
model captures the general features of protein fold-
ing landscapes, notably the trade-off between loss of
configurational entropy and the gain of favorable
interactions during folding, and importantly allows
exact calculation of folding rates. Keeping the total
energy of interactions in the native structure fixed,
we examine the dependence of folding kinetics and
thermodynamics on the balance between local and
nonlocal interactions.

Zwanzig’s Model

We first briefly summarize the simple model of
folding studied by Zwanzig.5 A generalized protein is
considered to have a large number N of independent
degrees of freedom, which are perhaps most simply
viewed as backbone torsion angles. Each angle has
v 1 1 allowed states, so there are a total of (v 1 1)N

conformations. For each angle, the state that is
found in the native conformation is called ‘‘correct.’’
Folding kinetics are modeled by allowing any indi-
vidual angle to change from correct to incorrect or
from incorrect to correct. In a ‘‘golf course’’ energy
landscape, in which the energy of the native confor-
mation is large and negative and all nonnative
conformations have the same (zero) energy, all tran-
sitions between nonnative conformations occur at
the same rate, and folding is extremely slow because
a near exhaustive search is required to locate the
native conformation (Levinthal’s paradox).

Zwanzig showed that folding can proceed rapidly if
the correct state for each angle has slightly lower
energy than the incorrect states. A simple reaction
coordinate (S), the number of incorrectly oriented
angles, emerges if this energy bias is the same for all
angles because all protein conformations with the
same number of angles correctly oriented have the
same energy and can thus be grouped together. To
make the native state stable despite the large en-
tropic cost of folding (there are ,[(v 1 1)N 2 1] non-
native conformations), Zwanzig added an extra en-
ergy bonus when all angles are in the correct
configuration (S 5 0). Zwanzig obtained analytic so-
lutions for the kinetics of folding and showed that
the system undergoes highly cooperative folding-
unfolding transitions.5

Extension of Model

We consider the contributions of local and nonlocal
interactions to the kinetics and thermodynamics of
folding by using an extension of Zwanzig’s model. To
illustrate our use of the terms ‘‘local’’ and ‘‘nonlocal’’
in the context of the model, we begin with a simple
example. Let E(x1,x2,x3 , . . . , xN) be the energy func-
tion describing a physical system with N indepen-
dent degrees of freedom where the contribution of
each of the xi to the total energy is independent of the
state of the other variables: E(x1,x2,x3 , . . . . , xN) 5
e1(x1) 1 e2(x2) 1 e3(x3) 1 . . . 1 eN(xN). In such a

system, a change in one of the variables, say x1, has
no effect on the values of any of the other xi. Because
changes in one part of the system have no effect on
any of the other parts of the system, we call such
interactions ‘‘local.’’ If, on the other hand, the contri-
butions from the different variables to the energy are
highly coupled, changes in one part of the system
will generally affect the other parts considerably,
and we call such interactions ‘‘nonlocal.’’ Local and
nonlocal thus refer to interactions that are functions
of single and large numbers of degrees of freedom,
respectively. This corresponds to the sense in which
the terms are usually used in the context of protein
structures: interactions between residues close in
the linear sequence of a protein depend only on the
values of the small number of torsion angles between
them, whereas bringing together residues distant
along the sequence requires the proper orienting of
many torsion angles.

For simplicity, we continue with the assumption
that the energy of a configuration depends only on
the number of incorrectly oriented angles. The en-
ergy can thus be written as a function of S:

E(S) 5 eLfL(S) 1 eNLfNL(S) (1)

where eL and eNL determine the overall contributions
of local and nonlocal interactions to the total energy,
and fL(S) and fNL(S) describe the dependencies of the
local and nonlocal interactions on the number of
incorrectly oriented angles. We identify the energy
biases toward the correct orientation of each angle in
Zwanzig’s model as local interactions; they clearly
have the important features of being independent
and additive. With this choice, fL(S) is proportional to
the number of incorrectly oriented angles and hence
is a linear function of S. To explore the effects of
cooperative interactions that occur prior to the forma-
tion of the native structure, we take fNL(S) to be a
smoothly decreasing function of the amount of native
structure (the number of correctly oriented angles)
rather than the abrupt drop in the energy of the
native state considered by Zwanzig. Because of the
coupling between the different degrees of freedom,
fNL(S) is a strongly nonlinear function of S; physical
intuition suggests that nonlocal interactions should
play an increasingly important role as the amount of
native structure increases and more and more ter-
tiary interactions and contacts are formed and thus
that d2fNL(S)/dS2 , 0. The specific forms for fL(S) and
fNL(S) used in this paper are

fL(S) 5 S

fNL(S) 5
51 2 exp (2aS)6

51 2 exp (2aN )6
N. (2)
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Both functions decrease monotonically from N (at
S 5 N, the fully unfolded structure) to zero (the
native structure); the important features are the
linearity of fL(S) and the rapid and nonlinear de-
crease in fNL(S) as S approaches 0. With this choice
for fL(S), the local interaction strength eL is just the
local energy bias toward the correct orientation of a
single torsion angle. The parameter a determines
the cooperativity of the nonlocal interactions; the
problem studied by Zwanzig corresponds to a : 1.5

To explore the contributions of local and nonlocal
interactions to folding kinetics, we consider the
problem of folding on an ‘‘energy budget’’: the total
energy of the native structure is held constant, but
the relative contributions of local versus nonlocal
interactions to this energy are varied over a broad
range. The justification for the ‘‘energy budget’’ con-
cept is the finite number of energetically favorable
interactions possible in the native state of a protein.
For example, because there are only a finite number
of contacts possible in a compact polymer, an in-
crease in the number of local hydrophobic contacts
(between residues close in the sequence) necessarily
requires a decrease in the number of nonlocal hydro-
phobic contacts. With the imposition of the energy
budget, equation (1) becomes

E(S) 5 eLfL(S) 1 (eT 2 eL)fNL(S) (3)

where eT is a constant and eL ranges from zero to eT.

MATERIALS AND METHODS
Free energy function

The entropy for a given S (the number of incor-
rectly oriented angles) is

s(S) 5 kB ln 5NS · N!/(S!(N 2 S)!)6 (4)

where kB is Boltzmann’s constant because there are
Ns different ways of orienting the S incorrect angles,
and N!/(N 2 S)!S! ways of choosing the S incorrect
angles from the N total angles.5 The free energy F(S)
is [combining Eqs. (2) and (3)]

F (S) 5 eLS

1 (eT 2 eL)
51 2 exp (2aS)6

51 2 exp (2aN )6
N 2 Ts(S). (5)

F(N) 2 F(0) is independent of eL in keeping with the
energy budget concept. For computational conve-
nience v and N were chosen to be 5 and 20, respec-
tively; results were qualitatively the same for larger
N and energy functions with similar curvatures. The
maximal energy bias toward the correct orientation
of a single angle, eT, was set to 2.36kBT so that
F(20) 2 F(0) 5 15kBT. All energies and free energies
are in units of kB T.

Calculation of folding rates

Kinetic analysis requires assumptions about how
the different states are connected. In Zwanzig’s
model, each individual angle can independently
change from correct to incorrect or from incorrect to
correct. The rate of transitions from incorrect to
correct is taken to be a constant (k1). The net rate of
transitions from S to S-1 is k1 · S because any of the S
nonnative angles can become properly oriented. To
satisfy detailed balance, the rate of transitions from
S to S 11 is then (N 2 S) k1 exp 2b(U(S 1 1) 2 U(S)).

The energy function that Zwanzig used was simple
enough to permit analytical calculation of folding
rates. We have not been able to obtain analytical
solutions for the class of functions considered in this
paper. Instead, the rate of folding was calculated for
each of the curves by using the transition matrix
method (see for example Ref. 7). The transition
matrix element Ti,j describes the probability of tran-
sitions from state i to j in unit time; thus the
probability of transitions from i to j in t time units is
(Tt)i,j. With transitions from a given state S to states
S 2 1 and S 1 1 chosen according to the standard
Metropilis scheme, the nonzero elements of the
transition matrix are:

TS,S11 5 (N 2 S)k1min · 51, exp ((E(S) 2 E(S 1 1))/kBT )6

TS,S21 5 Sk1 min 51, exp ((E(S) 2 E(S 2 1))/kBT )6

TS,S 5 1 2 TS,S11 2 TS,S21. (6)

The probability of arriving at the completely folded state
(S 5 0) starting from the completely unfolded state
(S 5 20) in time t is given by the matrix element (Tt)20,0.
In all calculations k1 5 0.01 and kBT 5 1.

Folding rates were obtained from simple exponen-
tial fits of kinetic curves calculated by using the
transition matrix method. For folding conditions in
which the kinetics deviated significantly from simple
exponential, the reciprocal of the time required for
the probability of nonnative configurations to decay
to 1/e of the equilibrium value is given in the figures
and table in lieu of a rate.

RESULTS

The kinetics and thermodynamics of folding were
characterized for a series of energy functions (Fig.
1A) in which the local interaction strength eL was
varied while keeping the total energy difference
between the fully folded (S 5 0) and fully unfolded
(S 5 20) structures constant through compensating
changes in the nonlocal interaction strength [Eq (3)].
As eL increases, the contribution of the nonlocal
interaction term decreases, and the energy becomes
an increasingly linear function of S. The number of
states and hence the entropy s (S) decreases rapidly
as S decreases [Eq. (4)]. The corresponding free
energies F(S) 5 U(S) 2 Ts (S) [Eq. (5)] are shown in
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Figure 1B. All energies and free energies are in units
of kBT, where kBT ; 1 (the temperature is not varied
in any of the calculations). For small eL (upper
curves) there is a pronounced free energy barrier to
folding at S , 5, which decreases as eL increases
(lower curves). The free energy barrier arises be-
cause the decrease in energy with decreasing S is
initially not sufficient to compensate for the large
decrease in entropy. The free energy minimum corre-
sponding to the unfolded state becomes lower and

moves toward the folded state (lower S) as eL in-
creases. The effect of changing the cooperativity of
acquisition of energetically favorable interactions [a
in Eq. (2)] is illustrated in Figure 1C for a fixed value
of eL. As a decreases, the free energy barrier to
folding decreases and moves away from the folded
state, whereas the free energy of the unfolded state
is not substantially changed.

The rate of folding was calculated for the different
values of eL and a by using the transition matrix
method (see Methods). Although calculated numeri-
cally, the results are exact and do not depend on
transition state theory type approximations. A pro-
nounced lag phase and distinctly nonexponential
kinetics (Fig. 2C) were obtained for energy functions
with free energy barriers of less than 2kBT (bottom
curve in Fig. 1C). As the free energy barrier in-
creased, the kinetic curves approached simple expo-
nentials (Fig. 2A,B). Very low residuals from simple
exponential fits were obtained when the free energy
barrier was greater than 6kBT.

Figure 3 shows the distribution of probability
density along the reaction coordinate at different
times for high and low free energy barriers. For
barriers of greater than ,3kBT (Fig. 3A), there is a
rapid relaxation from the completely unfolded state
(S 5 20) to the equilibrium unfolded distribution
(centered at S < 15), which may resemble the rapid
changes in spectroscopic signals following changes
in solvent conditions in experimental protein folding
studies. After this initial relaxation, the kinetics
closely resemble a two-state process: proteins are
transferred from the unfolded population to the
folded population with little change in the shape of
either population. In contrast, with barriers of less
than 2kBT, the population steadily migrates in the
direction of decreasing S (Fig. 3B), producing the
characteristic lag phase evident in Figure 2C.

The rate and free energy of folding for the energy
functions in Figure 1A are plotted versus eL in Figure
4. The rate of folding increases with increasing eL

(closed circles), whereas the stability of the native
state decreases (open circles; the native state is not
stable for eL . 1.5). Thus, for a smooth funnel-
shaped energy landscape, optimization of folding
would involve a trade-off between kinetics and ther-
modynamics: increasing the strength of local interac-
tions increases the rate of folding but decreases the
overall stability. A similar trade-off is observed when
a is varied (Table I); as the cooperativity of forming
interactions increases, the stability of the native
state increases and the folding rate decreases.

The preceding analysis assumes that the energy
landscape is a smooth downhill funnel: the energy
decreases monotonically with decreasing S in Figure
1A. However, there may well be bumps in protein
folding funnels due to desolvation effects8,9 side
chain freezing,10 and/or the breaking of nonnative
interactions formed earlier in folding.11 Such barri-

Fig. 1. Energy and free energy for different eL and a. The
reaction coordinate S is the number of angles not in their native
configuration. A: Energy and B: Free energy for a 5 0.3 and eL 5 0
(triangles), 0.5 (circles), 1 (plusses), 1.5 (squares), and 2 (dia-
monds). As indicated in Eq. (3), increasing eL increases the
strength of local interactions and decreases the strength of
nonlocal interactions. C: Free energy for eL 5 0.5 and a 5 0.15
(diamonds), 0.2 (triangles), 0.3 (circles), 0.45 (squares), and 0.6
(plusses).
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ers may separate ‘‘molten globule’’ states of larger
proteins from their native conformations. To investi-
gate the effect of such bumps on the relationship
between local interaction strength and folding rate,
the energy for S 5 2 was increased by 6kBT for all the
curves in Figure 1A. The most dramatic effect is the
reduction in the increase in folding rate with increas-
ing local interactions (Fig. 4, closed squares); the
folding rate actually decreases when eL is increased

from 1.5 to 2. The presence of the barrier consider-
ably reduces the changes in the positions of the
unfolded and transition states upon changes in local
interaction strength.

F Value Distribution

To simulate the effect of point mutations on the
kinetics and thermodynamics of folding, a series of
‘‘mutant’’ energy functions were generated from the
function shown in Figure 1B, circles. Particular
angles cannot be singled out in the model; instead,
the ‘‘mutations’’ correspond to disruptions at differ-
ent stages in the aquisition of native structure. A
‘‘mutation’’ at S8 consisted of an addition of 1.5kBT to
the energy for all values of S less than or equal to S8;
the consequences of the mutation are spread out
among all of the properly oriented degrees of free-
dom. The rate of folding decreased in all of the
‘‘mutants’’ (Fig. 5, circles), the decrease was maximal
at S ,10, which corresponds to the region between
the unfolded minimum and the peak of the barrier
for the parent energy function. F values were calcu-
lated from the changes in stability and folding rate
for each of the mutations as described by Itzhaki and
co-workers.12 The F values increased from 0 to 1 as S
increased from 0 to 9 (Fig. 5, triangles) and then
remained close to 1 up to S 5 17. The observation of

Fig. 2. Representative kinetic traces. The y axis is the total
probability of configurations with S . 0. A: Large free energy
barriers (eL 5 0, a 5 0.3, Fig. 1B, triangles) give rise to simple
exponential kinetics. B: Modest free energy barriers (eL 5 0.5,
a 5 0.3; Fig. 1B, circles) give rise to near exponential kinetics with
a small lag time. C: In the absence of a barrier (eL 5 0.5, a 5 0.15,
Fig. 1C, diamonds) the kinetics are clearly nonexponential. Dashed
lines in A and B are simple exponential fits.

Fig. 3. Snapshots of folding. Probability distributions at early
times in folding (indicated at the highest point of each distribution)
for the traces shown in (A) Figure 2B (,3kBT barrier) and (B)
Figure 2C (no barrier).
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F values intermediate between 0 and 1 for muta-
tions in small proteins12 is consistent with the expec-
tation that mutations primarily affect the energies of
states in which large numbers of interactions are
starting to be formed (Fig. 1A; 75% of the energy of
the native state is gained in going from S 5 6 to
S 5 0).

Transition State Theory Approximation

Approximations based on simple transition state
theory are frequently used in treatments of protein
folding kinetics. Because folding rates are deter-
mined independent of such approximations in this
study, there is a rare opportunity to test the validity
of such approximations (a related approximation
was considered by Zwanzig). The rate was estimated
by using kf 5 k1 · P(transition state), where P(transi-
tion state) is calculated assuming thermal equilib-
rium between the transition state (the highest free
energy state) and states with larger S. As shown in
Table I, the agreement is quite good for all but the
smallest free energy barriers, for which the assump-
tion of a rapidly generated Boltzmann distribution
among nonnative configurations clearly breaks down.

DISCUSSION
Protein Folding Transition States

One of the striking features of experimental data
on the folding of small proteins is the prevalence of
simple exponential relaxation kinetics. As shown in
Figure 2, simple exponential kinetics arise in the
simple model when the free energy barrier to folding
is many kBT. Under such conditions, the rate of
equilibration within the two free energy minima is
fast compared with the rate of folding and unfolding,
and thus the probability of barrier crossing is inde-
pendent of time. The experimental observation of
simple exponential kinetics may be related to the
correlation evident in Figures 1–3 between devia-
tions from simple exponential kinetics and energy
functions which do not produce highly stabilized
native states. Stabilization of the native state re-
quires that a substantial number of energetically
favorable interactions be made late in folding, and

Fig. 5. Effect of mutations on F values and folding rates.
1.5kBT was added to the free energy for eL 5 0.5, a 5 0.3 (Fig. 1B,
circles) for all values of S less than or equal to that indicated on the
horizontal axis. The F value is defined as

2kBT ln [kf(mutant)/kf(wt)]/DFfold(mutant) 2 DFfold(wt)

according to Ref. 12. Circles, folding rate; trianges, F values.

Fig. 4. Optimization of folding is a trade-off between kinetics
and thermodynamics. The folding rate (closed circles) and free
energy of folding (open circles) are plotted as a function of eL, with
a 5 0.3 (the corresponding energy and free energy functions are
shown in Fig. 1A,B). Because of the fixed energy budget, increas-
ing eL reduces the nonlocal interaction strength [Eq. (3)]. The
dependence of the folding rate on the local interaction strength
changes significantly when the energy for S 5 2 is increased by
6kBT (closed squares). The free energy of folding is

DFfold 5 2kBT ln [Peq(S , 4)/Peq(S $ 4)]

where Peq is the probability of the indicated values of S at
equilibrium.

TABLE I. Exact andApproximate Folding Rates for
Different Local Interaction Strengths*

eL a Folding rate Approximate folding rate

0 0.3 4.51E-06 2.78E-06
0.5 0.3 7.96E-05 6.22E-05
1 0.3 4.00E-04 4.76E-04
1.5 0.3 7.79E-04 1.17E-03
2 0.3 2.40E-03 —
0.5 0.6 1.33E-07 9.16E-08
0.5 0.45 1.94E-06 1.38E-06
0.5 0.3 7.96E-05 6.22E-05
0.5 0.2 7.46E-04 1.00E-03
0.5 0.15 1.27E-03 —

*The rates in column three were obtained by using the exact
transition matrix method; those in column four were estimated
by using the approximation:

kAPPROX 5 k1

e2F(STS)/kBT

o
S$STS

e2F(S)/kBT

where STS is the value of S for which F is maximum.
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this produces an overall free energy barrier because
the entropic cost of fixing degrees of freedom is
initially not compensated.

The concept of a ‘‘transition state’’ appears in much
discussion of protein folding kinetics, often borrowed
directly from the theory of simple bond breaking or
making reactions. Given the dramatic differences
between protein folding and such reactions, it is not
necessarily obvious how transition state-based pic-
tures apply to protein folding. The success with the
simple transition state approximation (Table I) shows
that from the point of view of estimating the rate of
folding, a ‘‘transition state’’ is a useful construct, but
in the examples discussed here, the transition state
consists of a vast ensemble of structurally unrelated
states that have some particular value of S. In the
presence of free energy barriers of at least several
kBT, the kinetics begin to approach a simple exponen-
tial, and the concept of a transition state takes on
some meaning; in the absence of such barriers the
concept breaks down entirely. The position of transi-
tion state and unfolded state ensembles along the
reaction coordinate is strongly dependent on the
shape of the energy function (Fig. 1B).

Fersht1 argued that ‘‘A simple analysis of the
optimization of the rate of protein folding predicts
that rates are highest when the denatured state has
little residual structure under physiological condi-
tions.’’ The opposite is seen in Figure 1B and Figure
4: as the strength of local interactions increases, the
amount of ‘‘native-like structure’’ increases (the aver-
age number of the 20 degrees of freedom not cor-
rectly oriented decreases from 17 to 9; Fig. 1B) and
the rate of folding increases (Fig. 4, closed circles).
The explanation for the discrepancy is simple: Fer-
sht assumed that the free energy of the transition
state remained unchanged, whereas in Figure 1B it
is clear that the free energy of the transition state
decreases dramatically as the local interaction
strength increases. The presence of a bump in the
funnel near the native state greatly reduces the
movement of the transition state, and the folding
rate decreases with increases in the local interaction
strength (Fig. 4, closed squares) as argued by Fersht.

One-dimensional free energy profiles, such as those
in Figure 1B,C appear frequently in discussions of
protein folding. It is important to note that for the
model described here, the one-dimensional profile
captures the kinetic and thermodynamic properties
of the system exactly despite the large decrease in
dimensionality. Folding for real chains and in the
simple model involves a search for the native state in
a very high dimensional space; folding dynamics in
the latter case can be accurately described in one
dimension because 1) all angles are treated equiva-
lently and hence the energy depends only on the
total number of correctly oriented angles and 2) only
one angle is allowed to change at a time during the
search, so a configuration with S angles incorrectly

oriented is only kinetically connected to configura-
tions with S 1 1, S, or S 2 1 angles incorrectly
oriented. Both the energy function and the connectiv-
ity between states (determined by the move set in
Monte Carlo studies of lattice chains) are consider-
ably more complex for real chains, and thus one-
dimensional free energy profiles can only provide an
approximate description of their dynamics. A chal-
lenge for future work is to extend the simple model to
energy landscapes more complex than the smooth N
dimensional funnels studied here.

Folding Free Energy Landscapes

General properties of the folding free energy land-
scape (see ref. 11, 13) for excellent recent reviews)
can be deduced from fairly elementary considerations.
First, to avoid the impossible exhaustive search
through conformational space, there must be some
bias toward the native state in the folding energy
landscape; the landscape must be to some extent
funnel shaped. Second, thermodynamic stability re-
quires that the native state be considerably lower in
energy than typical unfolded configurations. Third,
the energy surface is not likely to be smooth; the
multitude of weak interactions possible between the
large number of atoms in a polypeptide chain neces-
sarily leads to a very large number of local minima, a
subset of which will be entered and exited (with some
increase in energy) during folding. This ‘‘roughness’’
leads to a reduction in the rate at low temperatures.
The debate over the relative importance of local
versus nonlocal interactions is connected to the
relative importance of the three defining features of
the energy landscape: increasing the local interac-
tion strength has the rather opposite effects of 1)
increasing the bias toward the native state in the
folding funnel, 2) decreasing the energy of nonnative
states (which can contain substantial local native
interactions) and thus reducing the stability of the
native state, and 3) increasing the variation in the
energies of the nonnative states and thus increasing
the roughness of the landscape.11 Claims that local
interactions favor folding focus on 1), whereas argu-
ments to the contrary focus on 2) and 3).

For example, Govindarajan and Goldstein2 fo-
cused on 2) and 3) in their argument that ‘‘optimal
conditions for folding are achieved when the contribu-
tions from local interactions to the stability of the
native state is small.’’ Folding dynamics were as-
sumed to be related to the ratio of the folding
transition temperature to the glass transition tem-
perature, which is maximized in a random energy
model by maximizing R 5 D/G, where G is the width
of the distribution of energies of unfolded states, and
D is the average energy difference between these
states and the native state. Optimization of the ratio
was found to involve reducing the strength of local
interactions. However, the argument depends on a
correspondence between thermodynamic param-
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eters, such as R, and dynamic properties, such as
foldability, which may not always hold. Our simple
model is an extreme example: R indeed increases as
the strength of local interactions decreases, as in the
lattice model used by Govindarajan and Goldstein,2

but the rate of folding also decreases, and becomes
extremely slow for large values of R (Fig. 6). Maximiz-
ing R, while increasing the stability of the folded
state, clearly does not ‘‘optimize’’ the foldability in
this model. As mentioned above, increasing the
strength of local interactions increases both the bias
toward the native state in the folding funnel and the
roughness of the energy landscape; the earlier study
only considered the latter effect, but an obvious
limitation of the current study is that only the
former is considered (the energy landscapes are
smooth). A better treatment of local interactions
would incorporate both the likely increase in rough-
ness found by Govindarajan and Goldstein2 and the
effects noted in this study. Roughness can be readily
incorporated into Zwanzig’s model through an activa-
tion barrier in the elementary transition rate k1, but
it is not obvious how to relate the activation barrier
to the local interaction strength without introducing
additional parameters (Wolynes and coworkers13

have argued that the effective diffusion constant
changes along the reaction coordinate, a further
complication).

A related limitation of the current model is that
there is no provision for attractive nonlocal interac-

tions that are not present in the native structure (the
‘‘principle of minimal frustration’’13 taken to the
extreme). This limitation may be considerably less
severe for proteins than for heteropolymers in gen-
eral; the simple two-state folding behavior and mono-
tonic decrease in the folding rate with increasing
denaturant observed for most small (,100 amino
acids) proteins suggest that misfolded kinetically
trapped states do not contribute appreciably to their
folding dynamics.

Because of the shortcomings of the simple model,
it is important that studies of more concrete lattice
models support the general conclusions about the
role of local interactions in folding. In one of the first
lattice simulation studies of protein folding, Go and
Taketami14 found that, for a 49 residue chain on a
two-dimensional square lattice, increasing the
strength of local interactions relative to nonlocal
interactions increased the rate of folding but de-
creased overall stability. In studies of a 27 residue
chain on a cubic lattice, Akbevich et al.3 found that
structures with large numbers of local interactions
were less stable than structures with primarily
nonlocal interactions. In studies of a similar model,
Unger and Moult4 found that progressively increas-
ing the local interaction strength increased the fre-
quency of folding to the native conformation in long
Monte Carlo simulations. Akbevich et al.3 noted
that, if the temperatures of folding simulations for
different lattice proteins are chosen so that all of the
proteins have the same stabilities, faster folding is
observed for proteins with larger numbers of nonlo-
cal interactions. Depending on the choice for the
temperature dependence of the intrinsic rate con-
stant k1, this could well occur in our simple model
because stability decreases dramatically with in-
creasing local interaction strength (Fig. 4).

Local Interactions and Evolutionary
Optimization

In contrast to the predictions of diffusion-collision
type models of folding, increasing the helical propen-
sity of segments of a protein that are helical in the
folded state has been shown not to increase the rate
of folding in several different proteins.12,15 In a
recent study of CheY, increases in helical propensi-
ties were found to actually decrease the rate of
folding (Victor Munoz, personal communication).
Premature formation of rigid helical structure could
perhaps slow the rate of folding by interfering with
desolvation, side chain interdigitation, or other slow
steps associated with the docking of different por-
tions of the chain. Increases in the local stiffness of
the chain could also reduce the frequency of the
chain reversals required for folding. In contrast, we
found that mutations that disrupt local interactions
in turns can significantly slow the rate of folding of
small proteins16. It is possible that local interactions

Fig. 6. The folding rate decreases with increasing R. Shown
are the results for the top four energy functions in Figure 1A; R de-
creases as eL increases. As defined by Govindarajan and Gold-
stein,2
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associated with chain reversals play a particularly
important role in folding; more experiments are
clearly required in this area.

The protein database may be viewed as a large
evolutionary optimization experiment. If the trade-
off between kinetics and thermodynamics is resolved
in biological proteins in favor of kinetics, then strong
contacts should be enriched at short sequence sepa-
rations, whereas the converse is expected if thermo-
dynamics rather than kinetics has been optimized.
Abkevich et al.3 observed that a relatively large
fraction of contacts in protein structures involve
pairs separated by more four residues along the
sequence and argued that this reflected evolutionary
optimization. However, a sizable fraction of contacts
are necessarily nonlocal in compact structures. To
correct for the strong effects of chain connectivity
and compactness on the distribution of contacts, we
investigated not the distribution of total contacts,
but the frequency of strong contacts (2 side chains
with more than 15 pairs of adjacent carbon atoms)
relative to the frequency of total contacts (2 side
chains with at least 1 pair of adjacent carbon atoms).
As expected, the frequency of both strong contacts
and total contacts decreases monotonically with
increasing sequence separation (data not shown).
The ratio of the strong contact frequency to the total
contact frequency is more interesting; as shown in
Figure 7, there is a significant enrichment in strong
contacts both at very short sequence separations (the
major contributions are from i,i 1 3 and i,i 1 4 con-
tacts) and at very long sequence separations. In light
of the results with the simple model, it is tempting to
speculate that the former reflects optimization of
kinetics, and the latter, optimization of thermody-
namic stability.

Comparison with Other Models

The simple model introduced by Zwanzig and
developed in this paper captures effects that are
largely lost or blurred in the simple two-state (U ⇔ N)
models often used to analyze experimental data: for
example, the distinction between configurational
entropy and the other energetic and entropic contri-
butions to the free energy, the possibility of move-
ment of the position of the denatured state and
transition state along the reaction coordinate with
changes in the energy function, and the ensemble
nature of the transition and denatured states. The
limitations of the two-state model greatly complicate
the analysis of the effect of changes in local interac-
tion strength on the kinetics of folding due to the
neglect of the first two of these features. The current
model provides a simple conceptual framework that
captures many of the qualitative features of folding
extracted from lattice models, such as the largely
entropic nature of the barrier and the rate limiting
search for a transition state with substantial native-
like features, and in fact lattice simulation results

are often interpreted by constructing free energy
profiles similar to those in Figure 1. Although cer-
tainly more realistic than that of the simple model
used here, the free energy landscapes of lattice
chains are somewhat parameter dependent, and it is
not always clear how closely they resemble those of
proteins; in particular, the roughness of the land-
scape may be considerably greater than that for real
proteins given the on-off character of the interac-
tions. However, the great advantages of lattice mod-
els are obvious: they incorporate excluded volume,
connectivity, and specific intrachain interactions,
and the lack of treatment of these effects are limita-
tions of the current model.

ACKNOWLEDGMENTS

We thank D. Shortle, R. Zwanzig, V. Munoz, D.
Teller, H.S. Chan, and R. Baldwin for valuable
comments on the manuscript and V. Munoz for
communicating results prior to publication. K.S. was
supported by an NIH predoctoral training grant
(GM07270). This work was supported by young
investigator awards to D.B. from the NSF and the
Packard Foundation.

Fig. 7. Strong contacts are enriched at both very short and
very long sequence separations. Two residues with at least one
pair of side chain carbon atoms separated by ,5 Å were
considered to be in contact; two residues with .15 pairs of side
chain carbons separated by ,5 Å were considered to form a
strong contact. The relative sequence separation of the two
residues is (n1 2 n2)/N where n1 and n2 are the positions of the
two residues in the sequence and N is the number of amino acids
in the protein. Contacts in the protein structure database (August
1996 PDB-Select 25 set of proteins17) were collected into 10 bins;
the n/10 bin included all contacts with relative sequence separa-
tions between (n 2 1)/10 and n/10. The frequency of strong
contacts and total contacts was determined for each bin: contact
frequency 5 (number of contacts in bin)/(number of contacts in all
bins). The ratio of strong contact frequency to the total contact
frequency is plotted as a function of the relative sequence
separation in the figure; the denominator corrects for the decrease
in contact frequency with increasing sequence separation ex-
pected in a compact polymer.
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