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Abstract 

The crystallographic phase problem is indeterminate 
in the absence of additional chemical information. A 
successful ab initio approach to the macromolecular 
phase problem must employ sufficient chemical con- 
straints to limit the solutions to a manageably small 
number. Here we show that commonly employed 
chemical constraints - positivity, atomicity and a 
solvent boundary - leave the phase problem greatly 
underdetermined for Fourier data sets of moderate 
(2.5--3.0 A) resolution. Entropy maximization is also 
beset by multiple false solutions: electron-density 
maps are readily generated which satisfy the same 
Fourier amplitude constraints but have higher entro- 
pies than the true solution. We conclude that a 
successful ab initio approach must make use of high- 
resolution Fourier data and/or stronger chemical 
constraints. One such constraint is the connectivity 
of the macromolecule. We describe a rapid algorithm 
for measuring the connectivity of a map, and show 
its utility in reducing the multiplicity of solutions to 
the phase problem. 

Introduction 

Much attention has been devoted to the problem of 
reconstructing a three-dimensional structure solely 
from the X-ray diffraction pattern of a single macro- 
molecular crystal. In order to recover the phases of 
the Fourier components, additional information 
must be provided. This information, whose source 
ultimately is chemistry, ranges from knowledge that 
the electron density must be real and bounded 
through to the detailed rules of stereochemistry. 

Most recent work on ab initio phasing in macro- 
molecular crystallography has focused on the search 
problem - the construction of efficient algorithms 
and numerical procedures for obtaining the electron 
density p(x,y,z) from the diffraction data [FhklJ and 
some limited chemical information, usually positivity 
and/or atomicity. The question of the uniqueness of 
the solutions obtained by such algorithms has in 
contrast been relatively neglected. This is unfortu- 
nate since even the most sophisticated of algorithms 
is bound to fail when the true distribution p(x,y,z) is 
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only one of a very large number of distributions 
satisfying all of the constraints. The goal of this 
paper is to begin to map the degeneracy of the 
solution space with the hope of focusing attention on 
problems likely to have a manageably small number 
of solutions. 

We begin by reviewing analytical results on the 
uniqueness of solutions to the related phase problem 
in optics, and then attempt to estimate the degree to 
which various amounts of chemical information 
reduce the multiplicity of solutions of the crystallo- 
graphic phase problem by seeking solutions satisfy- 
ing the given constraints in the neighborhood of 
random p(x,y,z). 

Uniqueness of phase recovery in optics 

There is extensive literature on the uniqueness of 
solutions to the phase problem in imaging applica- 
tions where one seeks to recover an object p from the 
amplitude of its Fourier transform. The following 
analysis shows that the phase problem in two or 
higher dimensions almost always has a unique 
solution. 

Define 

and 

L / 2  L / 2  

F= ~ ~ p(x,y)exp[2rri(hx + ky)] (1) 
y = - -  L / 2  x = - -  L / 2  

I = FF* (2) 

where * indicates the complex conjugate. The phase 
problem is to recover the complex quantity F from 
the scalar intensities I. With the substitutions z~ = 
exp(2rrih) and z2 = exp(2rrik), F and I become poly- 
nomials in the complex variables z: 

L / 2  L / 2  

F= Z Z p(x,y)~z~. (1') 
y = - L / 2  x = - L / 2  

F and I are analytic functions throughout the com- 
plex plane provided p(x,y) is bounded. If F can be 
factorized, 

F = F, F2 F3...F,, (3) 
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then 

and 

F *  = ' - : * ' - : * ' - : *  ~ : *  - !  a 2 , 3  . . . .  n (4) 

I =  F,F* FzF~ F3F~...F~F*. (5) 

Now consider the 2"-~ functions H obtained by 
replacing one or more of the n factors F~ in (3) with 
E*. As H* will contain F, instead of F~*, the product 
HH* = FF* = I, and the phase problem thus does 
not have a unique solution. If, conversely, F cannot 
be factorized, the relation I = F F *  uniquely 
determines F. If a general algorithm existed for 
factorizing polynomials in two or more dimensions, 
the phase problem in principle could be solved 
simply by decomposing I into its unique factors F 
and F* [for more details see Fiddy (1987)]. 

Uniqueness thus depends on whether F is factor- 
izable. In one-dimensional problems, F is polynomial 
in a single variable, and the fundamental theorem of 
algebra guarantees that F can always be expressed as 
a product of first-order polynomials. Thus, the phase 
problem in one dimension generally does not have a 
unique solution. However, there is no equivalent of 
the fundamental theorem in higher dimensions, and 
in fact almost all polynomials in two or more vari- 
ables are irreducible (Hayes, 1987). Thus, neglecting 
the effects of noise, the phase problem in two or 
more dimensions almost always has a unique solu- 
tion. This has been borne out in practice by the 
development of simple iterative algorithms (Dainty 
& Fienup, 1987) for reconstructing an object p(x,y) 
from only the magnitude of its transform. 

Unfortunately, these arguments do not carry over 
to the crystallographic phase problem. For the conti- 
nuous function I to be completely specified by its 
values at discrete points, it must be sampled at the 
Shannon limit at least. From (1) and (2) simplified to 
one dimension for convenience, I is seen to be the 
transform of the autocorrelation of p(x): 

L L / 2  

I =  ~ [ ~ p(x')p(x + x')]exp(2zrihx). (6) 
x -- L x '  L / 2  

The limits on the outer sum are twice that of the 
inner sum since with p non-zero for - L / 2  < x ' <  
L/2, the autocorrelation of p will be non-zero for 
- L < x < L. As the spectral width of I is twice that 
of F, the Nyquist spacing required for I (1/2L) is one 
half that required for F (I/L). However, the periodi- 
city of the crystal restricts sampling to integer multi- 
ples of 1/L, which suffices for F but not for I. The 
polynomial I is thus not uniquely specified by crystal 
diffraction data, and hence there is no equivalent of I 
= FF* (I and F polynomials) to uniquely determine 
F in crystallography. 

The information that p is bounded thus leaves the 
crystallographic phase problem twofold underdeter- 

mined, even with data to infinite resolution. Addi- 
tional chemical information is clearly required to 
uniquely define p, but the amount needed is 
unknown since currently there is no satisfactory 
analytical theory for uniqueness in the presence of 
even very simple chemical constraints such as positi- 
vity (Millane, 1990). 

The question of uniqueness in the presence of 
chemical constraints can be probed using a crude 
computational approach. The multiplicity of solu- 
tions for a given set of constraints can be very 
roughly estimated by seeking solutions in the neigh- 
borhood of random points in phase space. This type 
of approach of course can only demonstrate (by 
construction) non-uniqueness, but it may be useful in 
identifying problems which are too poorly 
determined for the true (physical) solution to stand 
out from multiple solutions satisfying all the con- 
straints. 

A t o m i c i t y  

The single most important piece of chemical 
information which has been applied to the crystallo- 
graphic phase problem is atomicity, as evidenced by 
the enormous success of classical direct methods. 
The assumption that a crystal is made up of atoms 
randomly placed in the unit cell leads to joint prob- 
ability distributions of the structure factors 
(Hauptman & Karle, 1953; Klug, 1958). Insertion of 
the observed values of structure-factor amplitudes 
into the appropriate joint probability distributions 
leads to conditional probability distributions for the 
associated phases. 

In small-molecule crystallography, the 'atomic' 
hypothesis makes the structure-determination prob- 
lem greatly overdetermined [number of measured 
[Fhkll ,> 3(N-1) ,  where N is the number of atoms]. 
For proteins, however, this is generally not the case. 
As atomicity still lies at the base of several recent 
approaches to the macromolecular phase problem, 
including Bricogne's use of the saddle-point approxi- 
mation to obtain improved conditional probability 
distributions of very large numbers of structure 
factors (Bricogne, 1984), it is useful to investigate the 
extent to which atomicity limits the number of pos- 
sible solutions for macromolecular diffraction prob- 
lems. The algebraic minimum of Fourier magnitudes 
[3(N-1)  observations] is clearly not enough to 
uniquely determine the positions of N atoms, even 
for the very simple problem of three atoms in one 
dimension (Hauptman & Karle, 1951). 

To investigate the power of atomicity in conjunc- 
tion with varying amounts of diffraction data, solu- 
tions satisfying the Fourier constraints were sought 
in the neighborhoods of randomly generated distri- 
butions of atoms. The required manipulations were 
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Table 1. Multiple distributions of  atoms satisfying the same diffraction amplitudes 

This experiment utilized the 1.0 ,~ resolution structure of pancreatic trypsin inhibi tor  (5PTI, obtained from the Protein Data Bank) and the space group 
(P2~2~2t) and  unit-cell dimensions (74.1, 23.4, 28.9 A) of  native PTI crystals (Wlodawer,  Walter,  Huber  & Sjrl in,  1984). The 454 non-hydrogen atoms of  
PTI were placed randomly  within the asymmetric  unit  o f  the crystal. The cost C = ~(,F, ru, l - iFc,~!) 2 was then minimized with respect to the atomic 
posit ions using 120 cycles of  X-PLOR's  Powell conjugate-gradient  minimizer.  As the t ransformat ions  p(x)- - - ,p( -x)  and p(x)---,p(x + T), where T is a vector 
between two distinct origins, change the phases but  not  the magni tudes  of the structure factors, the phase error between the native and minimized structures 
was calculated for all possible choices of  origin and enant iomorph .  The phase errors listed in co lumns  3 and 4 are for the origin and enan t iomorph  giving 
the lowest overall phase error, rF~ro~l and ~0~ are ampli tudes and  phases calculated from the native dis t r ibut ion (PTI), iFm,,I and ~0,~,, are calculated from 
the final minimized distr ibutions,  and  ~o~,~, are phases calculated from the start ing r andom distributions.  Phase errors are in ~. 

Resolut ion 100(IF,~ - Fm,,I) (tp,n,, - ~0,~,,) (~o~r~ - ~0,,,,) (~o . . . .  - ~o,,,,) (~o ..... - ~o~,) R.m.s. deviat ion (A) 
cut-off  (A) /~F,,u, (all reflections) (20.0-6.0 A) (all reflections) (20.0-6.0 A) (start ing vs final coordinates)  

3.0 
1 2.6 84.4 85.4 60. I 29.0 2.19 
2 2.1 84.1 93.7 60.7 35.1 1.92 
3 1.9 85.9 88.2 56.2 31.5 1.79 
4 2.2 86.8 88.5 59.5 30.6 2.06 
5 2.8 86.8 88.5 59.5 30.6 2.06 

2.5 
I 12.9 85.3 83.9 67.6 29.8 1.90 
2 12.2 87.4 88.0 69.3 30.2 1.86 
3 12.8 86.7 85.3 65.5 35.0 1.93 
4 12. I 87.4 86.6 67.5 34.2 1.83 
5 I1.8 86.0 80.4 65.1 27.8 1.94 

2.0 
I 23.7 87.2 73.4 73.6 34.3 1.69 
2 23.6 88.0 80.1 73.4 27.1 1.73 
3 24.0 88.0 80.1 74.6 29.7 1.76 
4 23.2 88.9 83.0 74.2 34.3 1.77 
5 23.6 88.0 84.8 74.6 24.9 1.79 

1.5 
1 31.6 88.4 86.2 83.4 25.7 1.64 
2 32.1 88.3 90.4 80.6 23. I 1.54 
3 31.9 88.8 89.8 82.3 27.6 1.67 
4 31.4 88.7 81.8 92.8 28.0 1.65 
5 32.0 88.1 85.8 83.1 25.7 1.64 

conveniently carried out within the framework of 
Axel Briinger's program X-PLOR (Brfinger, 1992). 
Random distributions were generated by placing the 
454 atoms of the small protein pancreatic trypsin 
inhibitor (PTI) at random positions in the unit cell. 
The cost function C=Z([Ftrue]-  JFcalcl) 2, where 
[Ftruel are Fourier amplitudes generated from the 
native configuration of atoms, was then minimized 
for each distribution. To investigate the relationship 
between the multiplicity of solutions and the amount 
of Fourier data, the procedure was performed with 
high-resolution cut-offs ranging from 3.0 to 1.5 A. 

In the experiment described in Table 1, five 
random distributions were generated and minimized 
for each high-resolution cut-off. Minimization 
reduced the R factor (~.][Ftruel-IFcalcll/Y. IFtru~l) 
from a starting value of --56% for each random 
distribution to between - 2 %  for the 3.0 A trials and 
- 3 1 %  for the 1.5 A trials (Table 1, column 2). The 
root-mean-square displacement of the refined atomic 
coordinates from the random start was only - 1.8 A 
(Table 1, column 7). The phases calculated from the 
minimized coordinates correlated with those calcu- 
lated from the starting coordinates, particularly at 
low resolution (Table 1, columns 5 and 6). Low 
R-factor solutions are thus found within a reason- 
ably small neighborhood of each of the starting 
random distributions. To assess the similarity 
between the minimized distributions and the 'native' 

configuration of atoms, the phase error was calcu- 
lated after translation to each of the eight origins of 
the space group (P21212~) with and without inversion 
of coordinates. Importantly, the phase error for all 
of the minimized distributions in all positions relative 
to the native coordinates was close to the random 
value of 90 ° . There was no similarity between the 
native and minimized phase sets even at low 
(20.0--6.0 ,~) resolution (Table 1, columns 3 and 4). 
Finally, to determine whether the different mini- 
mized distributions were distinct solutions, the phase 
error (for all possible choices of origin and enantio- 
morph) was calculated between each pair of distribu- 
tions. As shown in Table 2, the phase sets for six 
minimized distributions were completely different 
from each other and from the true distribution. 

There are two striking features of the data pre- 
sented in Table 1. (i) A low R-factor solution was 
found in the neighborhood of each of the random 
distributions generated when the Fourier data was 
cut off at 3.0 or 2.5 • resolution. As the errors in 
macromolecular diffraction experiments are such 
that R factors for refined structures are often above 
15%, the fit between these 'false' solutions and the 
diffraction data is as good as might reasonably be 
expected for the true solution. Thus, with a diffrac- 
tion data cut-off of 2.5 A resolution, there are a very 
large number of solutions satisfying atomicity and 
the Fourier amplitudes within reasonable experimen- 
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Table 2. Phase error between distinct low R-factor 
solutions at 2.5/~ resolution 

Six random distributions of atoms were minimized to fit amplitudes calcu- 
lated from native PT! as described in Table 1 using a high-resolution cut-off 
of 2.5 ,~. The final R factors were 12.8, 12.0, 12.2, il.9, 12.6, 12.0% for 
trials 1~5 respectively. The weighted phase error between each pair of 
distributions was calculated for all choices of origin and enantiomorph. The 
entries above the diagonal are averages over the entire resolution range, the 
entries below the diagonal, averages over the range 20.0-6.0 A. As in Table 
1, the errors are for the configuration having the lowest overall phase error. 

PTI 1 2 3 4 5 6 
PTI 0.0 86.3 87.6 86.7 85.1 87.6 85.5 

1 76.1 0.0 87.7 86.1 88.0 85.9 86.5 
2 87.5 87.3 0.0 85.4 87.8 88.0 85.0 
3 86.4 80.6 74.2 0.0 87. I 87.1 85.4 
4 81.5 89.0 87.0 85.1 0.0 88.1 86.6 
5 84.1 90.4 94.1 90.3 79.4 0.0 86. I 
6 85.1 89.5 84.5 90.7 90.0 91.8 0.0 

form of apolipoprotein E (ILPE; Wilson, Wardell, 
Weisgraber, Mahley & Agard, 1991) because solvent 
regions comprise an appreciable portion ( - 5 0 % )  of 
the unit cell. As described in Table 3(a), low R-factor 
solutions were found for each of the nine starting 
random distributions using data to 3.0 A resolution 
[(number of reflections)/3(N-1)= 1.2]. The true 
structure and one of the minimized distributions are 
compared in Fig. 1. The atoms of the native struc- 
ture ( x )  and of the minimized distribution (o) fall 
within the same regions of the asymmetric unit, but 
inside these regions they are completely uncorrelated. 

tal error. The joint probability distributions used in 
direct methods and their extensions will thus have a 
very large number of false maxima. (ii) The statistics 
for each of the five trials within a single resolution 
range were virtually identical. Minimization of 75 
additional random distributions using a 2.5 A resolu- 
tion data cut-off resulted in R factors (=  12%) and 
mean coordinate shifts very similar to those of the 
five 2.5 A trials listed in Table 1. The surface defined 
by the cost function C thus appears to be quite 
regular with local minima of constant depth within 
the vicinity of any random point in coordinate space. 
The important parameter describing the surface is 
presumably the ratio of data (the Fourier ampli- 
tudes) to free parameters (the atomic coordinates). 
For PTI, the ratio is 0.86, 1.45, 2.75 and 6.32 at 3.0, 
2.5, 2.0 and 1.5 A resolution, respectively. In a simi- 
lar experiment with the larger protein ribonuclease 
(124 residues), the same dependence of the R factor 
after minimization on the resolution of the data was 
observed, with large numbers of false solutions 
having R factors less than 12% found when the 
Fourier data were truncated below 2.5 A (at 2.5 A 
resolution, the ratio of data to parameters is 1.47). 

Solvent boundary 

The information that protein crystals contain rela- 
tively featureless solvent regions has been succesfully 
exploited for phase refinement (Wang, 1985). The 
constraint of a solvent boundary may also be 
incorporated into the joint probability distributions 
of structure factors arising from atomicity (Bricogne, 
1988). To investigate the power of the combined 
constraints of a solvent boundary and atomicity in 
reducing the degeneracy of the phase problem, 
random distributions of atoms were generated and 
minimized as described above except that the atoms 
were additionally constrained to be within an 
envelope generated from the native structure. For 
this experiment we used the structure and crystal 
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Fig. 1. C o m p a r i s o n  of  native and  non-nat ive  dis tr ibut ions o f  
a toms.  Three  representat ive 1 A  thick sections o f  the native 
( I L P E )  dis t r ibut ion and the low R-fac tor  minimized distr ibu- 
tion described in line 3 o f  Table  3 are shown, x represents  the 
posi t ion o f  an a t o m  in I L P E  and o represents  an a t o m  in the 
non-nat ive  minimized distr ibution.  
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Table 3. Multiple distributions o f  atoms fitting the native Fourier amplitudes and solvent boundary 

This exper iment  utilized the structure and crystal form (P2t2j2j,  a = 40.65, b = 53.96, c = 85.45 A) o f  the N- terminal  domain  o f  apol ipoprote in  E ( ILPE) ,  
an elongated four-helix bundle o f  144 residues (Wilson e t  al . ,  1991). An  envelope was generated f rom a map  of  the native protein using Wang ' s  a lgor i thm 
(Wang, 1985) with a solvent content  o f  50%. The 1172 heavy a toms of  apol ipoprote in  E were placed randomly  inside the envelope.  The  r andom 
distr ibutions were then minimized to fit the native Four ie r  ampli tudes  as described in the legend to Table  1. To  retain the a toms inside the envelope,  the cost 
funct ion C was supplemented with a term ~ltPt~¢ - ~p~,~cl where the sum is over  reflections below 14 A resolution. Specification o f  the envelope removed the 
ambigui ty  in origin and enan t iomorph  simplifying the calculat ion o f  the phase difference between t ransforms of  the true and minimized distributions.  

(a) Compar i son  of  nine low R-factor  solutions with the true solut ion and the start ing r andom distr ibutions 

100~IF~ - Fmi, I) ( ¢ , , , , -  ~Pm,,) (~P,,~ -- ~P,,~,) ( ¢  . . . .  -- tPmi,) (Cp . . . .  -- era,,) R.m.s. deviat ion (A) 
Trial / ~ F t ~  (all reflections) (20.0--14.0 A) (all reflections) (20.0-14.0 A) (starting vs final coordinates)  

! 14.1 86.6 18.8 63.7 17.5 2.18 
2 13.8 88.0 19.1 69.5 15.8 2.45 
3 15.2 89.0 22.2 63.7 12.7 2.31 
4 14. I 89.2 22.8 66.9 14.8 2.42 
5 12.7 88.4 22.5 66.7 15.8 2.48 
6 13.1 88.3 16.5 65.8 20.3 2.51 
7 13.8 88.1 15.2 65.5 10.3 2.49 
8 16.3 85.9 16.4 62.4 13.3 2.00 
9 15.0 89.0 22.4 63.7 15.1 2.21 

(b) Overal l  phase error  between the nine low R-factor  solutions 

2 3 4 5 6 7 8 9 
1 86.5 86.9 86.7 88.1 87.1 89.0 86.8 86.7 
2 - -  86.5 87.6 88.6 90.1 87.7 89.9 86.4 
3 - -  - -  86.9 87.2 86.3 88.3 87.2 85.8 
4 - -  - -  - -  85.5 88.0 88.2 86.3 86.5 
5 . . . .  88.9 87.0 89.3 87.3 
6 . . . . .  87.0 89.2 86.9 
7 . . . . . .  84.8 87.5 
8 . . . . . . .  88.3 

Table 4. Multiple low R-factor maps having higher 
entropy than the true solution 

Input  maps  were generated using ampli tudes  (to 2.5 A resolut ion) calcu- 
lated f rom PTI and phases calculated f rom either PTI  or  one o f  the six 
minimized r andom structures described in Table  2. Maps  were modified 
according to equa t ion  (7) and new phases were calculated by inverse 
Four ie r  t ransformat ion .  These phases were combined  with PTI  ampli tudes  
to generate  a new m a p  which was again modified using (7). Convergence  
was reached in 8-12 cycles. The  R factor  and relative en t ropy  [ - Epln(p/ /z)  
whe re /~  is the uni form distr ibut ion and p is normal ized such that  ~ p  = 1] 
after the 12th cycle are listed in the table. 

Input  map  Start ing ent ropy Final en t ropy Final R factor (%)  
PTI - 0.457 - -  0.6 
MINI - 0.474 - 0.443 4.9 
MIN2 - 0.477 - 0.440 5.0 
MIN3 - 0.478 - 0.447 4.9 
MIN4 - 0.477 - 0.446 4.8 
M1N5 - 0.483 - 0.444 5.0 
MIN6 - 0.481 - 0.441 5.0 

The envelope constraint led to a low phase error at 
low resolution, but at medium and high resolution 
the phases of the true and minimized distributions 
were uncorrelated (Table 3a, columns 3 and 4). The 
phase sets for the different low R-factor solutions 
were completely unrelated at all but very low resolu- 
tion (Table 3b). Thus, the combination of atomicity 
and a solvent boundary does not suffice to remove 
the phase ambiguity for moderate resolution data 
sets. 

Entropy 
Several recent approaches to the phase problem have 
been based on maximum-entropy methods. The 
maximum-entropy formalism is convenient as it 

ensures an everywhere-positive electron density. It is 
not always obvious whether additional chemical 
information (beyond positivity) is being applied in 
these methods. Two exceptions are the previously 
alluded to approach of Bricogne (Bricogne, 1984), in 
which maximum entropy enters as a consequence of 
atomicity, and the approach of Prince & Sjrlin 
(Sj61in, Prince, Svensson & Gilliland, 1991) in which 
only the non-negativity property is utilized. A vague 
notion of smoothness may be implicit in some of the 
other applications of the entropy principle to the 
phase problem. 

The maximum-entropy map may be the most 
probable map given a limited amount of experimen- 
tal data, but for the approach to be successful, 
enough data must be used to make it reasonably 
probable that the maximum-entropy map resembles 
the true map. The power of the 'entropy principle' 
was investigated using an approach similar to that 
used to investigate atomicity above. Maps were 
generated using phases calculated from the random 
atomic distributions described in Table 2 and the 
'native' diffraction amplitudes [Ftruel. The entropy 
of each of the maps was maximized using the very 
simple iterative density-modification procedure 
described by Harrison (Harrison, 1989). A single 
cycle of this procedure consists of replacing the 
electron density p by the modified Newton's method 
update: 

p" = p - minLo,(p)/e + (p - (p)/e)/8][ln(p/(p)) + 1], 

(7) 
calculating new phases, and combining them with the 
IFtrue[ to produce a new electron-density map. As 
shown in Table 4, this simple algorithm was quite 
effective in increasing the entropy of all of the maps 
while keeping the R factor below 5%. The entropies 
of the six 'false' maps prior to maximization were all 
lower than the entropy of the true map, but after 
maximization all of the false maps had higher entro- 
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pies than the true solution. The entropy is thus a 
very poor measure of the quality of a particular 
phase set for diffraction data at 2.5 A resolution 
containing even very small amounts of error. How- 
ever, at 1.25 A resolution application of the entropy- 
maximization algorithm failed to generate maps with 
higher entropies than the true map, presumably due 
to the lack of high frequency noise in the true map. 

Positivity 

A similar approach was used to investigate the power 
of non-negativity. This constraint becomes more 
powerful at higher resolution since the negative 
ripples in the true map caused by Fourier series 
truncation effects are significantly reduced. 1.25 A 
resolution maps were generated using phases calcu- 
lated from the same six random distributions and the 
'native' IFt~e[. The F0oo term was chosen such that 
the lowest density in the true map was 0.0. The 
standard 'error reduction' algorithm used in optics - 
alternate projection onto the space of positive maps 
and the space of maps satisfying the Fourier con- 
straints - was then applied to each of the maps. This 
algorithm and slightly modified versions of it have 
had spectacular success in reconstructing images 
from Fourier amplitudes and random starting phases 
(Dainty & Fienup, 1987). As described in Table 5, 
everywhere-positive maps having low R factors were 
found in the neighborhood of each of the six random 
starting positions. Again, the phases of each of these 
positive solutions showed no correlation with the 
true phases. Thus positivity alone is a relatively poor 
constraint, even at 1.25 A resolution. 

These experiments suggest that at 2.5 A resolution 
there are an extremely large number of distinct maps 
satisfying the Fourier data and the constraints of 
positivity and atomicity and having entropies higher 
than the true solution. The non-convexity of the 
Fourier amplitude constraint necessitates a multisol- 
ution approach to the phase problem (Bricogne, 
1984; Luenberger, 1984). However, in order to be 
workable, the number of different solutions tracked 
by a branching algorithm must be kept to a manage- 
ably small number. 

Clearly, a successful ab initio approach to the 
phase problem must make use of Fourier data to 
well beyond 2.5 A. resolution and/or more chemical 
information. The common strategy of slowly adding 
on reflections to a small low-resolution basis set has 
a high probability of ending up in one or several of 
the large number of false solutions at intermediate 
(2.5 A) resolution. Bricogne s concept of likelihood 
(Bricogne, 1984, 1988; Bricogne & Gilmore, 1990) 
provides a way of utilizing high-resolution Fourier 
data even at early stages. The likelihood of a particu- 
lar assignment of phases within a basis set is propor- 

Table 5. Everywhere-positive 1.25 A resolution maps 
fitting native Fourier amplitudes 

Input maps were subjected to an iterative density-modification procedure 
similar to that described in the legend to Table 4 except that the high- 
resolution cut-off was 1.25 A (instead of  2 .5A)  and the density- 
modification step consisted solely of setting negative density to 0.0. The R 
factor after ten cycles is listed in the table. Connectivity (here the fraction of 
nodes in the largest graph) was calculated as described in the text using a 
computer program available from the authors. 

Input map Final R factor (%) Connectivity 
5PTI 2.1 0.97 

MINI 6.1 0.05 
MIN2 6.5 0.08 
MIN3 6.3 0.04 
MIN4 6.6 0.05 
MIN5 6.8 0.03 
MIN6 6.6 0.05 

tional to the conditional probability, given these 
assignments, of the observed amplitudes outside of 
the basis set. Additional chemical information that 
can be brought to bear on the problem includes 
partial structure information, non-crystallographic 
symmetry and knowledge of the density distribution 
in the form of a standard map histogram. The first 
two types of information may be incorporated into 
the likelihood formalism (Bricogne, 1988), but they 
are not always available in ab initio problems. 

Connectivity 
The macromolecular phase problem becomes greatly 
overdetermined once it is possible to trace an atomic 
model through the density and thus make use of the 
detailed rules of stereochemistry. Unfortunately, in 
general this is only possible at a relatively late stage 
in the solution of a macromolecular structure. How- 
ever, the information that proteins are made up of 
connected chains of atoms can be exploited much 
earlier. We have developed a simple rapidly calcu- 
lable (a fraction of a second on a VAX9000) 
measure of the connectivity of a map. Grid points 
having density greater than 1.4 standard deviations 
above the mean are connected by edges if they are 
nearest neighbors (one grid unit away in either x, y 
or z). Two grid points belong to the same graph if 
they are connected by a continuous set of edges. 
Connectivity is measured as the fraction of grid 
points above the density cut-off which belong to the 
largest graph or, alternatively, as the number of 
distinct graphs. 

The use of connectivity as a figure of merit breaks 
the multiple-solution ambiguity in the problems 
described above. For example, the everywhere- 
positive but false solutions at 1.25 A have scores 
ranging from 0.03 to 0.08, while the true map has a 
score of 0.97 (Table 5). The same sharp differentia- 
tion between the true and false solutions also occurs 
at 2.5 A resolution and for the distributions of atoms 
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within the native envelope described in Table 3 and 
Fig. 1. In order to be generally useful as a figure of 
merit, the connectivity must decrease smoothly with 
increasing phase error; a partially degraded version 
of the true map shoud be partially connected. As 
shown in Fig. 2, addition of increasing amounts of 
random phase error to a perfect map resulted in a 
monotonic decrease in the connectivity. This corre- 
lation of connectivity with phase error was observed 
even at very low (12 ,~) resolution (data not shown). 

Unfortunately, the inability to calculate derivatives 
of the connectivity rules out the use of efficient 
search algorithms for varying the phases to maximize 
the connectivity of a map. A Monte Carlo approach 
ran into difficulties due to the size of the search space 
at all but very low resolution ranges. A more 
promising application of connectivity may be as a 
figure of merit for evaluating and pruning the 
branches of a multisolution search tree. 

Measurement of the connectivity of the electron 
density may also be a powerful means to identify the 
correct solution from a large number of phase sets 
generated using classical direct methods. Woolfson & 
Yao (1990) found that application of the program 
SA YTAN to random phase sets for a small protein 
led to mean phase errors of less than 45 ° in six out of 
1000 trials. However, standard figures of merit, such 
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Fig. 2. Correlation between phase error and connectivity. Increas- 
ing amounts of random error were introduced into phases 
calculated from the PDB coordinates of apolipoprotein E 
(ILPE). Maps were generated using amplitudes calculated from 
the PDB coordinates and the random-error-containing phases. 
The connectivity of each of the maps was assessed using the 
algorithm described in the text. Square symbols represent the 
number of graphs, and circles, the fraction of nodes in the 
largest graph. Similar results were obtained for all resolution 
ranges tested; the results shown are with low- and high- 
resolution cut-offs of 20.0 and 3.0/k respectively. 

as those used in M U L T A N  and SA YTAN, were not 
effective in recognizing the good phase sets. They 
concluded, 'The full exploitation of direct methods 
to solve protein structures awaits the discovery of a 
new figure of merit more effective in ranking trial 
phase sets.' The possibility that the connectivity of 
the electron density is such a figure of merit should 
be investigated. 

Concluding remarks 

The chemical constraints employed by current 
approaches to the ab initio phase problem in macro- 
molecular crystallography are not sufficient to limit 
the solutions to a manageably small number for data 
sets of moderate resolution. Stronger chemical con- 
straints, such as connectivity, will be required to 
compensate for the low ratio of data to free param- 
eters intrinsic to the macromolecular phase problem. 

This work was supported by funding from the 
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Fellow of the Life Sciences Research Foundation. 
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