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SUMMARY

Dynamic instability, the stochastic switchingbetween
growth and shrinkage, is essential for microtubule
function. This behavior is driven by GTP hydrolysis
in the microtubule lattice and is inhibited by anti-
cancer agents like Taxol. We provide insight into the
mechanismof dynamic instability, based on high-res-
olution cryo-EM structures (4.7–5.6 Å) of dynamic mi-
crotubules and microtubules stabilized by GMPCPP
or Taxol. We infer that hydrolysis leads to a compac-
tion around the E-site nucleotide at longitudinal
interfaces, aswell asmovement of thea-tubulin inter-
mediate domain and H7 helix. Displacement of the
C-terminal helices in both a- and b-tubulin subunits
suggests an effect on interactions with binding part-
ners that contact this region. Taxol inhibits most of
these conformational changes, allosterically inducing
a GMPCPP-like state. Lateral interactions are similar
in all conditions we examined, suggesting that micro-
tubule lattice stability is primarily modulated at longi-
tudinal interfaces.

INTRODUCTION

Microtubules are ubiquitous cytoskeletal filaments critical for

multiple cellular processes, including intracellular trafficking,

establishment and maintenance of cell morphology, and cell di-

vision (Hyams and Lloyd, 1993). For many microtubule-depen-

dent processes, the underlying dynamics of the polymer play a

pivotal role. Perhaps the most striking example is mitosis,

when chromosomemotions are driven by microtubule dynamics

and segregation is primarily powered bymicrotubule depolymer-
ization (Desai and Mitchison, 1997; McIntosh et al., 2010; Rieder

and Salmon, 1994). Highlighting this fact, many successful anti-

proliferative drugs bind to tubulin and interfere with microtubule

dynamics (Dumontet and Jordan, 2010). Describing the confor-

mational cycle accompanying tubulin polymerization, nucleotide

hydrolysis, and microtubule depolymerization is essential for our

understanding of microtubule dynamics and will significantly aid

in improving existing anticancer drugs, as well as facilitating the

development of novel agents.

Dynamic instability, the stochastic switching between phases

of microtubule growth and shrinkage, is driven by the binding

and hydrolysis of GTP by the ab-tubulin dimer (Mitchison and

Kirschner, 1984). Tubulin dimers associate longitudinally to

form polar protofilaments, which associate laterally to form a

tube. Subunit addition occurs preferentially at the end of the

microtubule capped by b-tubulin subunits, termed the ‘‘plus

end.’’ ab-tubulin contains two GTP-binding sites (Figure 1A).

The N-site (nonexchangeable) in a-tubulin is buried within the

tubulin dimer at a longitudinal monomer-monomer (or intra-

dimer) interface (Nogales et al., 1998). This site is constitutively

occupied by GTP and has been ascribed a structural role

(Menéndez et al., 1998). The nucleotide at the E-site

(exchangeable) in b-tubulin is exposed on the surface of an un-

polymerized dimer and the terminal subunits of a microtubule

plus end (Mitchison, 1993; Nogales, 2000). Free ab-tubulin

dimers exchange bound guanosine diphosphate (GDP) for gua-

nosine triphosphate (GTP) at the E-site, rendering them compe-

tent for polymerization (Figure 1A). Upon addition of a tubulin

dimer to a growing microtubule plus end, the a-tubulin subunit

in the incoming dimer contacts the E-site GTP of the terminal

b-tubulin subunit, completing the binding pocket that enables

hydrolysis (Nogales et al., 1999). Thus, microtubule growth

and GTP hydrolysis are coupled, giving rise to the metastable

character of this polymer. Whereas a lattice of GTP-tubulin is

stable and promotes polymerization, the GDP-tubulin lattice is
Cell 157, 1117–1129, May 22, 2014 ª2014 Elsevier Inc. 1117

mailto:enogales@lbl.gov
http://dx.doi.org/10.1016/j.cell.2014.03.053
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2014.03.053&domain=pdf


BA

β

α

GTP GDP

Exchange

E-site

N-site

P
ol
ym
er
iz
in
g

D
ep
ol
ym
er
iz
in
g

Stochastic
hydrolysis

β

α

E-site

N-site

Taxol

elbatSelbatsnUelbatS

P

GTP
hydrolysis

Taxol
binding

C

-

+

Figure 1. High-Resolution Cryo-EM Structures of Dynamic and Stabilized Microtubules

(A) Cartoon of the ab-tubulin dimer, which spontaneously exchanges bound GDP for GTP in solution.

(B) Cartoon illustrating structural intermediates of microtubule polymerization and depolymerization.

(C) Cryo-EMmaps of GMPCPP (left panel, 4.7 Å resolution), GDP (middle panel, 4.9 Å resolution), and Taxol-stabilized (right panel, 5.6 Å resolution) microtubules,

viewed from inside the microtubule lumen. a-tubulin, green; b-tubulin, blue; GMPCPP/GTP; orange; GDP, pink; Taxol, yellow. Maps are contoured at 1.1 s.

See also Figures S1 and S2, Table S1A, and Movies S1, S2, and S3.
unstable and prone to depolymerization, or ‘‘catastrophe’’

(Desai and Mitchison, 1997). In the long-standing ‘‘GTP-cap’’

model (Mitchison and Kirschner, 1984), a microtubule will

continue to grow as long as it contains GTP-tubulin subunits

at its plus end (i.e., subunit addition outpaces hydrolysis).

When this GTP cap is lost, rapid depolymerization ensues

(Figure 1B).

The detailed molecular mechanism by which tubulin GTP

binding and hydrolysis controls microtubule dynamics remains

elusive despite decades of intensive study. Structural studies
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have led to the consensus view that conformational changes in

tubulin must be correlated with the transition from polymeriza-

tion to depolymerization. A straight tubulin conformation is found

within the body of the microtubule (Li et al., 2002; Nogales et al.,

1999), and all high-resolution structural analyses of this state

to date have been limited to electron crystallography of zinc-

induced two-dimensional (2D) sheets, which contain protofila-

ment-like head-to-tail assemblies of straight ab-tubulin (Nettles

et al., 2004; Nogales et al., 1998). A curved conformation is found

in microtubule depolymerization peels (Mandelkow et al., 1991),



head-to-tail arrays of bent tubulin heterodimers wherein longitu-

dinal contacts are maintained after lateral contacts are broken

(Figure 1B). The existence of peels as a depolymerization inter-

mediate, together with the fact that contacts between protofila-

ments aremediated by a series of loop-loop interactions (Li et al.,

2002; Sui and Downing, 2010), has led to the assumption that

lateral contacts are the most labile of the microtubule lattice

interactions. In this model, hydrolysis-induced destabilization

of the distant lateral contacts would occur through an unknown

allosteric mechanism.

Despite the apparently clear link between tubulin conforma-

tion and polymerization state, a robust connection between

tubulin nucleotide state and tubulin dimer conformation has

been difficult to establish. There is a continuing controversy

over whether different nucleotide-dependent curvature states

exist for tubulin dimers in solution (Barbier et al., 2010; Elie-Caille

et al., 2007; Müller-Reichert et al., 1998; Nogales and Wang,

2006). An intermediate curvature state in alternative polymers

formed at low temperatures with the nonhydrolyzable analog

GMPCPP (Wang and Nogales, 2005) has been proposed to

correspond structurally to an assembly sheet intermediate

observed during fast microtubule growth (Figure 1B) (Chrétien

et al., 1995). This led to the speculation that exchange of

GDP for GTP causes unassembled tubulin to adopt a straighter

conformation, compatible with polymerization. However, all

high-resolution X-ray crystal structures of tubulin to date have

captured the molecule in a bent conformation, regardless of

nucleotide state (Nawrotek et al., 2011), supporting a model

wherein lattice contacts, rather than nucleotide, controls tubulin

conformation (Aldaz et al., 2005). However, in all such structures,

polymerization was suppressed by binding tubulin to a microtu-

bule depolymerizer (Ayaz et al., 2012; Gigant et al., 2000; Prota

et al., 2013) and/or to microtubule-destabilizing drugs (Gigant

et al., 2005; Ravelli et al., 2004), which are likely to intrinsically

bias tubulin toward a bent conformation. The most direct infor-

mation on unassembled tubulin in different nucleotide states

has come from low-resolution small-angle X-ray scattering

data obtained under extremely low magnesium conditions

to inhibit polymerization, which was most consistent with a

constitutively bent conformation (Rice et al., 2008). Otherwise,

the solution conformation of individual tubulin dimers has been

extrapolated from that of individual protofilaments (Hyman

et al., 1992; Vale et al., 1994), aberrant assemblies, or inhibited

states, none of which is devoid of shortcomings, highlighting

the need for improved techniques to probe native tubulin and

microtubule structure.

In order to probe the link between nucleotide state, tubulin

conformation, and the stability of the microtubule lattice, we

have generated cryoelectron microscopy (cryo-EM) reconstruc-

tions of microtubules composed of tubulin bound to GMPCPP,

GDP, and GDP in the presence of Taxol, at around 5 Å

resolution, sufficient to generate pseudoatomic structures in

conjunction with Rosetta modeling. In addition to providing

insight into how GTP hydrolysis leads to microtubule destabili-

zation, our methodology should be broadly applicable to future

structural studies of microtubule-drug complexes and the inter-

actions between microtubule-associated proteins (MAPs) and

microtubules.
RESULTS

High-Resolution Cryo-EM Structures of Dynamic and
Stabilized Microtubules
In order to gain insight into the role of nucleotide state in micro-

tubule structure and stability, we used cryo-EM (Figures S1 and

S2 available online) to obtain structures of microtubules with

significantly improved resolution from those previously reported.

Prior cryo-EM studies of microtubules have been unable to

achieve better than �8 Å resolution, probably because of a

mixture of technical issues related to the quality of the micro-

scope, limitations in the image processing, or difficulties with

microtubule structure preservation. To improve data quality,

we collected our images on a latest-generation FEI 300 kV Titan

electron microscope, where 3.7 Å resolution diffraction rings

were visible in the power spectra of micrographs containing

ice contamination (Figure S1B), and where reference-free class

averages of microtubule segments showed signal to �6.7 Å

resolution (Figure S1C).

An additional limitation in prior cryo-EM reconstructions of

naked microtubules (Sui and Downing, 2010), or microtubules

decorated with the kinetochore complex Ndc80 (Alushin et al.,

2010), which binds microtubules with a tubulin monomer repeat,

was the inability of the image processing algorithms to distin-

guish the highly similar a- and b-tubulin subunits. This resulted

in reconstructions stalling at about 8 Å resolution, at which point

a- and b-tubulin become structurally distinct. To address this

problem, we decoratedmicrotubules with kinesin motor domain,

which provides a low-resolution feature marking each tubulin

dimer and aids in identifying the microtubule seam (the special

lateral contact breaking helical symmetry with heterotypic inter-

actions). Although the kinesin signal drove initial alignments

for our modified iterative helical real space refinement (IHRSR)

approach (Experimental Procedures; Figure S2), the kinesin den-

sity was ultimately less ordered than tubulin and is excluded from

display items.

Using this experimental strategy, we have obtained signifi-

cantly improved reconstructions of microtubules in two distinct

nucleotide states: GTP-like (bound to GMPCPP) (Figure 1, left)

and GDP (dynamicmicrotubules in which GTP is hydrolyzed dur-

ing assembly) (Figure 1, center). Both structures are resolved to

better than 5 Å (Fourier shell correlation [FSC] 0.143 criterion;

Figure S2B), sufficient to visualize the bound nucleotides, all sec-

ondary structural elements (including individual b strands), and

large aromatic side chains (Figures 2B, 2C, and S3). We also

report the structure of microtubules stabilized with Taxol at

5.6 Å resolution (Figure 1, right).

Comparison of the GMPCPP and GDP reconstructions indi-

cates a remodeling of the longitudinal interface between dimers

corresponding to an axial dimer repeat change of 2.4% (from

83 to 81 Å) (Movie S1). A longer monomer repeat (averaging

together a- and b-tubulin) for the GMPCPP versus GDP lattice

in the context of naked microtubules was reported almost 20

years ago (Hyman et al., 1995). Our study now demonstrates

that the change corresponds to a compaction at the dimer

interface, rather than a compression of the structure of each

monomer. Importantly, we do not observe this dimer interface

compaction when comparing the GMPCPP and GDP-Taxol
Cell 157, 1117–1129, May 22, 2014 ª2014 Elsevier Inc. 1119
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Figure 2. Rosetta Modeling of the GMPCPP

Microtubule

(A) The low-energy 1% GMPCPP ensemble is

shown in cartoon representation and colored as

in Figure 1. Bound nucleotides are shown in stick

representation and colored by heteroatom, as are

magnesium ions (green) and coordinating water

molecules. The map is displayed as a transparent

gray isosurface. Regions of high variability in the

Rosetta ensemble (above an rmsf threshold of 0.89)

are colored in shades of purple.

(B) b-tubulin C-terminal helices from the energy-

minimized consensus, all-atom Rosetta model,

colored as in Figure 1. Map is displayed as in (A).

(C) Individual beta strands in the a-tubulin interme-

diate domain.

See also Figures S3 and S4 and Tables S1B

and S1C.
reconstructions (Movie S2), suggesting that Taxol binding

allosterically affects remodeling of the interdimer interface. This

finding is again in agreement with early studies showing that

the monomer axial repeat in microtubules formed in the pres-

ence of Taxol is increased with respect to GDP microtubules

(Arnal and Wade, 1995). Reconstructions of kinesin-free micro-

tubules demonstrated that the effect we see for GMPCPP is

also present in the absence of kinesin (although in this case, a-

and b-tubulin are indistinguishable) (Movie S3), in accord with

the earlier results (Arnal and Wade, 1995; Hyman et al., 1995).

Rosetta Full-Atom Modeling of the Microtubule Lattice
Previous atomistic models of microtubule structure have gener-

ally relied on rigid-body docking of the electron-crystallographic

structure of tubulin into cryo-EM maps of the microtubule lattice

that never surpassed 8 Å resolution (Li et al., 2002; Maurer et al.,

2012; Sindelar and Downing, 2010). Although the structures re-

ported here (4.7–5.6 Å) still fall short of true atomic resolution,

tubulin features appear in much greater detail than ever re-

ported before within a microtubule. To take full advantage of

these features and produce a biochemically consistent atomic

model of microtubule structure, we used a Rosetta protocol (Di-

Maio et al., 2009; Song et al., 2013) that utilizes the cryo-EM

density map in structure refinement through the addition of an

energy term representing model-map agreement to the stan-

dard Rosetta energy function (see Extended Experimental Pro-

cedures). We used symmetry in energy calculations to model

neighboring interactions in a 3 3 3 lattice segment. The final

ensemble of microtubule models for each state, consisting of

the 1% lowest energy models, is well converged in terms of to-

tal energy and fit to the map (Figures 2A and S4A). For example,

the average pairwise root-mean-square deviation (rmsd) within

the GMPCPP ensemble is 0.52 Å. Regions of higher variability

within any given ensemble (>0.89 Å root-mean-square fluctua-

tion [rmsf] purple in Figure 2) correspond to loops or regions

in which density is weak and thus indicative of flexibility. The en-

sembles for the three microtubule states are distinct from each

other, with average pairwise rmsds ranging from 0.86 to 1 Å

(Figure S4B). To facilitate analysis, ‘‘consensus’’ models for

each ensemble were computed by averaging the coordinates
1120 Cell 157, 1117–1129, May 22, 2014 ª2014 Elsevier Inc.
of ensemble members, followed by side-chain optimization

and energy minimization.

Cross-correlation scores for each consensus model against

each map had the expected pattern, with each model fitting its

associated map best (Table S1B). We also compared each

consensus model to both the 14 pf GMPCPP map and an inde-

pendently determined 13 pf map of GMPCPP not used in the

Rosetta refinement (Table S1C). The GMPCPP model fits both

the 14 pf GMPCPP map used for refinement and the 13 pf

GMPCPP map better than the consensus models for the other

states (Table S1C), providing additional support that the refine-

ment procedure captures structural features corresponding to

nucleotide state rather than to noise in the maps.

Remodeling of E-site Structural Elements
To gain further insight into the conformational differences be-

tween the GMPCPP and GDP models, and by extension, a

GTP-like and GDP state of the microtubule lattice, we analyzed

a single protofilament of two dimers from each model, superim-

posed at the indicated b-tubulin subunit (Figure 3A). The overall

rmsd between the GMPCPP and GDP models, computed from

optimally aligned dimers, is 0.75 Å. Larger rmsd changes are

observed within the a subunit (0.85 Å) than within the b subunit

(0.63 Å). Interestingly, larger structural changes occur in the

alpha subunit C-terminal half compared to the N-terminal half:

1 Å versus 0.48 Å rmsd, whereas the difference between the

N- and C-terminal portions of the beta subunit exhibit similar dif-

ferences of 0.62 Å rmsd. We next calculated difference vectors

for the Ca positions, which represent the average differences be-

tween the two ensembles (Figure 3B). Calculation of control vec-

tors demonstrates that the pattern of displacements we observe

are robust to the chosen frame of reference for superposition

(i.e., a- or b-tubulin) (Figure S5). The pattern of conformational

changes is subtle but complex and is most clearly visualized in

morphs between the representative models of each state

(Movies S4, S5, S6, and S7).

The overall compaction of the interdimer interface is clearly

illustrated by the displacement vectors of the a-tubulin subunit

at that interface (Figure 3B). Although there are few internal re-

arrangements within the b subunit, we observe a substantial
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Figure 3. Hydrolysis Results in a Compression of the E-site at the Interdimer Interface

(A) Ca traces of two adjacent tubulin dimers from the GMPCPP (gold) and GDP (light purple) consensus models, superimposed at the underlined b-tubulin. The

view is tangential to the microtubule lumen. Nucleotides from the consensus models are shown in orange (GTP) and pink (GDP).

(B) Displacement vectors between Ca coordinates from the consensus models of the GMPCPP state to the GDP state, superimposed as in (A), are displayed as

narrow cylinders. The chain-trace displayed corresponds to the GMPCPP consensus model: a-tubulin is light gray and b-tubulin is dark gray. For clarity, vectors

are only displayed for every other Ca pair. Vectors are colored by subdomain unless otherwise noted: N-terminal domain, light blue; intermediate domain, purple;

C-terminal domain, red; vector length has been scaled 1.5-fold to aid visualization throughout. Selected structural elements along with associated vectors

are highlighted: b-tubulin nucleotide binding loops, dark blue; a-tubulin T7-H8, green; a-tubulin intermediate domain beta sheet, purple; a-tubulin H7, yellow.

Nucleotides are displayed as in (A).

(C) View of the E-site structural unit, colored as in (B). The RGB values of vector colors correspond to angular displacements relative to a Cartesian coordinate

system, i.e., vectors of similar color point in a similar direction.

(D) View of the a-tubulin intermediate domain and H7 in the GMPCPP model (gold), GDP model (light purple), and 1SA0 (dark red), superimposed on the beta

sheet of the a-tubulin N-terminal domain.

See also Figure S5 and Movies S1, S3, S4, and S5.
remodeling of the T3 and T5 loops, which engage the E-site

nucleotide at the interdimer interface (Figure 3C; Movie S4).

These b-tubulin loops move downward toward the rest of

the subunit, as well as inward toward the microtubule lumen.

Such motions had been predicted to accompany repositioning

of the nucleotide following hydrolysis, based on comparisons of

available tubulin and FtsZ structures (Aylett et al., 2011).

Notably, our modeling shows that loop T3 fills in the cavity

created upon loss of the g-phosphate. We infer that this struc-

tural transition is coupled to the movement we observe for the

T7 loop and helix H8 of the adjacent a subunit, which contains
the presumed catalytic residue Glu254 (Löwe et al., 2001), as

this region translates nearly 2 Å in a direction that matches

the motion of the a-tubulin loops (Figure 3C; Movie S4). Our

vector analysis suggests that this a-T7-H8 region moves fairly

independently from the remainder of the a subunit (Fig-

ure 3B), which, nevertheless, shows an overall translation to-

ward the minus end of the lattice. We therefore propose that

the b-tubulin T3 and T5 loops and the a-tubulin T7-H8 region

act as a cohesive structural unit across the interdimer inter-

face (Figure 3B, blue), presumably coordinated by the E-site

nucleotide.
Cell 157, 1117–1129, May 22, 2014 ª2014 Elsevier Inc. 1121



Figure 4. Rearrangements upon Hydrolysis Alter MAP Binding Sites

on the Microtubule Surface

Rearrangements on the microtubule surface. Vectors are colored by sub-

domain as in Figure 3. Binding sites for key MAPs are indicated.

See also Movie S6.
Remodeling of Longitudinal Dimer Contacts Is Coupled
to Conformational Changes in a-Tubulin
The observed changes at the interdimer contact, around the

E-site, are accompanied by internal rearrangements of the

tubulin dimer involving the intermediate and C-terminal domains

of a-tubulin (Figure 3B, bottom subunit). When aligned on the

N-terminal strands (S1–S5), the rmsd between the intermediate

domains from the GMPCPP and GDP consensus models

(comprising strands S7–S10 and helices H9–H10) shows a sig-

nificant difference of 1.64 Å. The structural change is dominated

by a translation of 1.28 Å toward the plus end, moving as a unit

with the C-terminal base of H7, effectively tucking up into the

dimer (Figure 3D).

Conformational differences between the electron crystallo-

graphic structure of tubulin, corresponding to a straight, pro-

tofilament-like state, and X-ray crystallographic structures of

curved, peel-like tubulin states, differ most significantly by a

rotation of the intermediate domain and a translation of H7 (Rav-

elli et al., 2004; Gigant et al., 2000; Nogales and Wang, 2006).

Comparing a-tubulin from the crystal structure of bent tubulin

bound to a stathmin-like domain (Protein Data Bank [PDB] ID

code 1SA0; Ravelli et al., 2004) with the GMPCPP and GDP

models, indicates that upon hydrolysis the a-tubulin intermedi-
1122 Cell 157, 1117–1129, May 22, 2014 ª2014 Elsevier Inc.
ate domain within the microtubule undergoes a shift similar to

that reported for the straight to bent transition, but no rotation,

likely because of the lattice constraints (Figure 3D; Movie S5).

This result is consistent with a model wherein reorganization

of the E-site following GTP hydrolysis generates internal strain

within the tubulin dimer that would subsequently relax during

depolymerization, a long-standing concept in the tubulin field

(Caplow et al., 1994). Interestingly, whereas in the stathmin-

bound structure the structural changes within the b subunit

are even larger than those observed in the a-subunit, within

the microtubule the nucleotide has a much smaller effect on

this region of b-tubulin, with no appreciable translation or

rotation.

Interplay between Nucleotide State and MAP Binding
Sites
We additionally observe hydrolysis-induced changes that prop-

agate outward to the microtubule surface, where the vast major-

ity of MAPs and motors interact with tubulin (Al-Bassam et al.,

2002; Alushin et al., 2010, 2012; Redwine et al., 2012; Sindelar

and Downing, 2010) (Figure 4; Movie S6). Helices H11 and

H12 in a and b subunits translate 1.1 and 0.53 Å, respectively,

away from the lumen upon GTP hydrolysis. For the a subunit,

where changes are most substantial, vector analysis demon-

strates that the movement of the C-terminal helices parallels

the rearrangement we observe in the intermediate domain, sug-

gesting the intermediate domain transmits rearrangements

in the E-site to the microtubule surface (Figure 3B; Movie S6).

The rearrangement of a-H12 is of particular importance, as

this helix constitutes part of the binding site for the kinesin and

cytoplasmic dynein motors (Figure 4) (Al-Bassam et al., 2002;

Redwine et al., 2012; Sindelar and Downing, 2010). This finding

may explain the observation that kinesin preferentially binds

to GMPCPP microtubules over destabilized GDP microtubules

(Nakata et al., 2011).

Recent reports indicate that GTPgS-stabilized microtubules

are an optimal structural mimic of the cap recognized by the

plus-end tracking factor end-binding protein 1 (EB1, Mal3p in

fission yeast) (Maurer et al., 2011; Maurer et al., 2012). Maurer

et al. (2012) reported an additional lateral contact present

in the GTPgS microtubule with respect to others previously

visualized, involving the b-tubulin H3 helix, a region closely

apposed to the E-site g-phosphate. As this helix was found

to be a component of the Mal3p binding site on the micro-

tubule, they proposed that this extra contact could be a key

mechanism for plus-tip recognition (Maurer et al., 2012). In

our studies, we observe minimal rearrangements in this region

(Figure 4B, green), which is never involved in lateral contacts.

We do not believe that this structural disparity is due to a

difference in nonhydrolyzable nucleotide but is likely due to

the difference in resolution of the two studies. On the other

hand, we observe a substantial nucleotide state-dependent

displacement of a-tubulin H10 and the S9-H10 loop in the in-

termediate domain (Figure 4B, purple; Movie S6), which were

also identified as a major component of the Mal3p binding

site. We therefore propose that rearrangement of the a-tubulin

intermediate domain could play a significant role in plus-tip

recognition.



BA Figure 5. Taxol Binding Restores the GDP

Lattice to a GMPCPP-like Extended State

(A) Analogous to Figure 2A, but comparing the

GMPCPP (gold) to the GDP-Taxol (light blue) state.

(B) View from the microtubule lumen of the su-

perimposed GDP (light purple) and GDP-Taxol

(light blue) models. Note the swelling of the Taxol

binding site (1), opening of the E-site interface (2),

and reversal of the longitudinal displacement of the

a-tubulin intermediate domain (3). Nucleotides

from the GDP-Taxol consensus models are dis-

played and colored as in Figure 3. Taxol is yellow.

See also Figure S6 and Movies S2 and S7.
Taxol Binding Restores the GDP Lattice to a
GMPCPP-like State
Superposition of our GMPCPP and GDP-Taxol models demon-

strates that, remarkably, Taxol binding globally reverses the

majority of the conformational changes we observe when

comparing the GMPCPP and GDP states (Figure 5A). We do

not observe any major conformational differences between

the GMPCPP and GDP-Taxol states, such as rearrangement

of tubulin subdomains or formation of a second layer of lateral

contacts in the GMPCPP state, as was reported in a recent

cryo-EM study (Yajima et al., 2012). Possible explanations for

these discrepancies include the different symmetries of the

microtubules chosen for processing (15 PF four-start helical

microtubules versus 14 PF three-start microtubules in this

study), image analysis procedures, the presence of bound kine-

sin in our work, and the different resolutions. The restoration of a

GMPCPP-like state by Taxol extends to the MAP-interacting

regions of the C-terminal domain (Figure 5A), suggesting that

caution should be employed when considering Taxol-bound mi-

crotubules to be in a GDP-like state in studies of MAP-microtu-

bule interactions.

Taxol binds distal to the E-site nucleotide, at the interface be-

tween the nucleotide binding and intermediate domains on the

luminal face of b-tubulin (Nogales et al., 1998) (Figure 1C). The

global remodeling we observe with respect to the GDP structure

suggests that Taxol is capable of allosterically reversing the
Cell 157, 1117–11
conformational transition accompanying

GTP hydrolysis, thus leading to an

extended state at the E-site and a reversal

in the movement of the intermediate

domain in a-tubulin (Figure 5B; Movie

S7). The T3 and T5 nucleotide binding

loops do not return to a GTP-like con-

formation, suggesting that the E-site is

opened by an alternative mechanism. In

order to be accommodated in the b sub-

unit, Taxol acts as a wedge to increase

the volume of the Taxol-binding pocket,

which swells from 883 Å3 in the GDP

model to 996 Å3 in the GDP-Taxol model

(Figure 5B). The volume of the pocket is

914 Å3 in the GMPCPPmodel, suggesting

that most of the volume increase is a
specific effect of Taxol binding. This expansion results from

slight rearrangements around the Taxol binding site (Figure 5B),

which we infer to be allosterically linked to expansion of the

E-site and reversal of the longitudinal displacement of the

a-tubulin intermediate domain. Vector analysis comparing GDP

versus GDP-Taxol and GMPCPP versus GDP-Taxol suggests

that these rearrangements are specifically generated by Taxol

binding (Figure S6).

The electron crystallographic structure of zinc-induced

sheets, 1JFF, was obtained in the stabilizing presence of Taxol.

Intriguingly, the axial repeat in 1JFF is similar to that of the GDP

microtubule (81.2 versus 81.3 Å). On the other hand, comparison

of the tubulin dimer structures shows that both a- and b-tubulin

subunits in 1JFF are more dissimilar to any of the three micro-

tubule-based structures we described here, than are the three

structures to each other (Table S1D). The volume of the Taxol

binding pocket is also slightly smaller in the zinc sheets

(956 Å3), an observation that, taken together with the different

lateral contacts present in this polymer, suggests that Taxol

may stabilize sheets by an alternative mechanism (there are no

available sheet structures in the absence of a stabilizing drug).

These differences indicate that physiological lateral contacts

are necessary for the allosteric effect of Taxol at the E-site, high-

lighting the importance of studying the mechanisms of microtu-

bule-stabilizing agents in a microtubule context. Future studies

of microtubules at higher resolution will be required to uncover
29, May 22, 2014 ª2014 Elsevier Inc. 1123



A

B

Figure 6. Lateral Contacts Are Highly Similar between Stable and

Unstable States
View from the microtubule lumen of homotypic interprotofilament

lateral contacts. The GDP-Taxol map is displayed as a transparent gray

isosurface.
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the detailed allosteric mechanism by which Taxol restores the

microtubule lattice to a GTP-like state.

Lateral Contacts Are Not Significantly Affected by
Nucleotide State or Drug Binding
There is a single major point of interaction that defines the lateral

interface between protofilaments. The H1-S2 and H2-S3 loops,

components of the nucleotide binding domain, interact with a

component of the intermediate domain known as the M-loop

(S7-H9 loop) across the interface (Figure 6A). This segment

adopts a helical conformation in both a- and b-tubulin in all three

states we examined, resembling that of a crystallographic study

of tubulin bound to the microtubule-stabilizing agent zampa-

nolide (Prota et al., 2013). The position of b-tubulin Tyrosine

283 is well defined and consistently buried at the interface, sug-

gesting that this residue plays a key role in the lateral interaction.

Although tyrosine is also found at the equivalent position in

a-tubulin, the next residue in the sequence, Histidine 271,

occupies the bridging density.

The peeling of protofilaments at depolymerizing ends (Man-

delkow et al., 1991), and the fact that lateral contacts are medi-

ated by loop-loop interactions burying a small surface area (Li

et al., 2002; Sui and Downing, 2010), led to the assumption

that lateral interactions are labile and thus most likely to be

affected by nucleotide hydrolysis. Previous computational

studies (Grafmüller et al., 2013) supported this hypothesis, pro-

posing that GTP hydrolysis results in an ordered-to-disordered

transition in the M-loop.

In contradiction with this model, we observe minimal differ-

ences in the lateral interfaces between the GMPCPP, GDP,

and GDP-Taxol representative models (Figure 6A). This finding

argues against a substantial weakening of lateral contacts

upon nucleotide hydrolysis being the major determinant of

microtubule destabilization. Additionally, our observation also

suggests that stabilization of a particular M-loop conformation

may not be the major mechanism by which drugs that bind

to the Taxol site stabilize the microtubule lattice as originally

proposed (Nogales et al., 1999). This conclusion is further

supported by the considerable difference in the position and

conformation of the M-loop in our microtubule structures

and the extended conformation present in the electron crys-

tallographic structure of GDP-Taxol zinc-induced sheets

(Löwe et al., 2001), where Taxol also had a stabilizing effect

(Nogales et al., 1995). This difference is even more pro-

nounced when comparing our present microtubule structures

with that of the recent X-ray crystallography atomic model of
(A) a-tubulin is colored light gray, and b-tubulin is colored dark gray.

Consensus models are displayed with lateral contacts colored (GMPCPP,

gold; GDP, light purple; GDP-Taxol, light blue). Key residues mediating lateral

contacts are displayed in stick representation, as is Taxol. Taxol and its

associated density are colored yellow.

(B) Superpositions of b-tubulin subunits from the electron crystallographic

structure of Taxol-bound tubulin (PDB ID code 1JFF; dark blue) (Löwe et al.,

2001), the structure of unassembled, inhibited zampanolide-bound tubulin

(PDB ID code 4I4T; dark red) (Prota et al., 2013), and the GDP-Taxol model

from this study (light blue; Taxol is yellow). Note that Y283 is only in position to

mediate the lateral contact in the GDP-Taxol model and that a clash is present

with the laterally adjacent subunit in the zampanolide model (asterisk).



Figure 7. Proposed Model of Destabilizing

and Stabilizing Structural Transitions in the

Microtubule Lattice

Cartoon of conformational transitions colored as in

Figure 1, except the a-tubulin intermediate domain

is purple. Left: nucleotide hydrolysis and phos-

phate release leads to compaction of the E-site

and rearrangement of the a-tubulin intermediate

domain (middle), generating destabilizing strain,

while tubulin remains within the constraints of the

microtubule lattice. Taxol binding (right, top) allo-

sterically leads to a reversal of E-site compaction

and the a-tubulin rearrangement; unraveling the

detailed mechanism of this transition will require

structural analysis at near-atomic resolution.

Subtle structural changes could be propagated

across the E-site interdimer interface (up arrow),

within the dimer (down arrow) or both. In the

absence of binding by a stabilizing agent, strain

would be dissipated by tubulin bending during

catastrophe (right, bottom), when the a-tubulin-

intermediate domain (and b-tubulin intermediate

domain, dark blue) is capable of undergoing rota-

tion due to the relief of steric constraints imposed

by lateral contacts.
zampanolide-bound, unassembled tubulin (PDB ID code 4I4T;

Prota et al., 2013), where the helical M-loop is in a position

that would clash with the laterally adjacent protofilament (Fig-

ure 6B). Rather, our data are most consistent with a model

wherein the microtubule-stabilizing effect of Taxol concerns

the structure and strength of longitudinal interfaces linked to a

GTP-like conformation of the tubulin dimer, as originally envi-

sioned by Amos and Löwe (1999).

DISCUSSION

Our results suggest a mechanism by which nucleotide hydroly-

sis is linked to destabilization of the microtubule lattice (Fig-

ure 7). We propose that upon hydrolysis and phosphate release,

compaction of the E-site leads to an energetically unfavorable

longitudinal translation of the a-tubulin intermediate domain,

including the H7 helix. The observed rearrangements of tubulin

upon hydrolysis are reminiscent of the conformational trajectory

toward a depolymerized, bent tubulin structure (Ravelli et al.,

2004). In the context of the microtubule, only the translational

component of that trajectory is present, whereas the rotational

component is not apparent. This difference is likely because

of lattice constraints that maintain a strained, straight conforma-

tion compatible with the microtubule lattice. Thus, we propose

that hydrolysis leads to conformational strain that would be

released by bending during depolymerization. This model is
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consistent with the changes we observe

upon Taxol binding, a stabilizer of the

GDP lattice. The predominant effect

of Taxol is to restore the longitudinal

interface and the a-tubulin-intermediate

domain to a GTP-like state, suggesting

that these structural transitions are
responsible for destabilization of the microtubule lattice upon

nucleotide hydrolysis.

The substantial changes we have visualized by comparing

GMPCPP, GDP, and GDP-Taxol microtubules contrast with

the minimal effect of nucleotide state on the inhibited form of

tubulin previously described by X-ray crystallographic studies.

In the context of an RB3-bound, bent tubulin dimer, the presence

of a gamma phosphate at the E-site affected the position of

merely two amino acids adjacent to the site, rearrangements

which were not further propagated throughout the structure

(Nawrotek et al., 2011). This suggests that the inhibition of tubulin

for crystallization purposes by cellular factors that bind and

stabilize its bent conformation can override the conformational

effects of nucleotide hydrolysis and stabilizing drugs that other-

wise occur within a microtubule.

More recently, the structure of the RB3-inhibited tubulin bound

to epothilone A or zampanolide showed the ordering of the

adjacent M-loop region (otherwise unresolved in previous crys-

tal structures) into a small helix, without any other significant

changes. This structure led to the proposal that inducing the

folded conformation of the b-tubulin M-loop was the primary

mechanism by which antimitotic agents that bind at the Taxol

site stabilize the microtubule lattice, i.e., by facilitating lateral

contacts (Prota et al., 2013). However, the position of the

M-loop region in the context of a rotated intermediate domain

clashes with the neighboring lateral subunit when this crystal
29, May 22, 2014 ª2014 Elsevier Inc. 1125



structure is placed in the microtubule lattice. Our finding that

lateral contacts are not substantially altered in different nucleo-

tide states or upon Taxol binding suggests that this set of tubulin

polymerization interfaces plays a more passive role in microtu-

bule stability than anticipated. Our results instead support a

model in which the energy contribution of lateral contacts may

be essentially constant, whereas longitudinal contacts and

conformational strain within the tubulin monomers (particularly

a-tubulin) are modulated.

It is possible that the folding of the M-loop observed in the

crystal structure of zampanolide/epothilone A-bound tubulin

could facilitate the incorporation of tubulin dimers into themicro-

tubule and thus be a component of the assembly-driving action

of Taxol-like compounds. Once assembled, however, the stabil-

ity of the microtubule lattice is likely governed by the total energy

of lateral and longitudinal contacts in the GTP state versus the

GDP state. Our analysis supports a model in which micro-

tubule-stabilizing agents like Taxol primarily exert a stabilizing

influence on the microtubule lattice by affecting internal rear-

rangements of the tubulin dimer that modulate conformational

strain and longitudinal contacts. This concept is consistent

with a study demonstrating that Taxol induces the formation of

straight individual protofilaments from GDP-tubulin peels (Elie-

Caille et al., 2007). In particular, our studies suggest that modu-

lating longitudinal interfaces by altering the conformation of

tubulin is a robust mechanism for affecting microtubule stability,

as previously predicted (Amos and Löwe, 1999), a model that

should aid future design efforts for drugs that target the Taxol

binding site.

Future Prospects
Our study demonstrates that microtubules are structurally trac-

table by cryo-EM at resolutions approaching those obtained by

X-ray crystallography, thus enabling the detailed study of nucle-

otide and drug effects and the interaction of microtubule binding

proteins in the context of the native tubulin polymer. The three

microtubule models we present here should provide an impor-

tant resource for computational modeling studies of dynamic

instability, effects of drug binding, and the physical properties

of microtubules.

Several outstanding questions and concerns remain to be

addressed. The presence of kinesin, currently a technical neces-

sity, may alter certain structural transitions occurring between

different states. Indeed, our reconstructions of kinesin-free mi-

crotubules suggest that the presence of kinesin slightly dampens

the magnitude of E-site remodeling (Movie S3). We optimistically

anticipate that future methodological advances in image pro-

cessing and instrumentation will allow similar and hopefully

even superior resolution to be achieved for undecorated micro-

tubule specimens.

Additionally, caution must be employed when interpreting the

structural details of GMPCPP-bound microtubules as the bona

fide ‘‘GTP state’’ of the microtubule lattice, in light of the dif-

ferences observed with different GTP analogs. One potential

explanation for such differences is that there are additional

structural stages in the microtubule polymerization-depolymer-

ization cycle, such as one corresponding to a post-hydrolysis

state, but before Pi release, that may be mimicked by one of
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these GTP analogs. Tubulin could also adopt several distinct

conformations prior to GTP hydrolysis (related perhaps to the

transition from an open growth sheet to the closed microtubule

cylinder), which different analogs may selectively stabilize.

Future high-resolution studies of microtubules bound to GTPgS

and other nucleotide state mimics, like the GDP-Pi analog

GDP-BeF3, will be important to investigate and address these

issues.

Finally, although our present structural analysis leads to the

unexpected conclusion that lateral contacts are not substan-

tially altered upon nucleotide hydrolysis, we cannot rule out

the possibility of more subtle effects that could nevertheless

contribute significantly to energetics and which would only be

revealed at higher, i.e., atomic, resolution. Additionally, hetero-

typic lateral contacts across the seam, where tubulin subunits

within a single dimer on one side of the interface are contacting

subunits contributed by two dimers on the other, are more

likely to be affected by the change in dimer repeat upon remod-

eling of the E-site with GTP hydrolysis. The seam could there-

fore constitute a ‘‘weak point’’ to initiate disruption of the lattice

at the onset of catastrophe, consistent with early observations

of microtubule conversion to sheets when depolymerization

is induced by cold treatment (Simon and Salmon, 1990). A

mismatch of axial repeats will not only occur at the seam of

microtubule segments with a homogeneous nucleotide state

but would also be present at homotypic lateral contacts in

a transition zone along the microtubule lattice, where hydroly-

sis is taking place and therefore containing a mixture of GTP

and GDP states. Although a mixed nucleotide lattice is

not amenable to experimental analysis by current structural

methods, which require averaging of microtubule segments,

computational modeling of these transitions, guided by the

structural findings described here, could contribute to our mo-

lecular understanding of the catastrophe process. In particular,

it would be interesting to explore potential cooperativity in the

structural transitions we have described, which seems likely

given the steric constraints imposed by the tightly packed

microtubule lattice.
EXPERIMENTAL PROCEDURES

Full details of the experimental procedures are presented in the Extended

Experimental Procedures.

Kinesin and Microtubule Preparation for Cryo-EM

Kinesin was diluted into EM buffer (for buffer compositions, see the Extended

Experimental Procedures) and desalted. ATP was added, and aggregates

were removed by ultracentrifugation. Taxol-stabilized GDP microtubules

(MTs) were prepared as previously described (Alushin et al., 2010). GMPCPP

microtubuleswere prepared by polymerizing porcine tubulin in CB1 buffer. The

MTswere pelleted and resuspended in cold EMbuffer, generating a solution of

GDP-tubulin. After clarification, GMPCPP was exchanged for bound GDP

for 1 hr on ice. GMPCPP MTs were then polymerized in EM buffer at 37�C.
Dynamic (primarily GDP) microtubules were polymerized in CB1 buffer at

37�C for 30 min and then pelleted.

All cryo-EM samples were prepared on glow-discharged C-flat grids (Proto-

chips) using a Vitrobot (Maastricht Instruments). Taxol and GMPCPP microtu-

bules were diluted to 0.25 mg/ml in EM buffer, and 4 ml was applied to the grid.

TheMTs were allowed to adsorb, and kinesin was then added to the grid. After

a short incubation, the sample was blotted and plunged into liquid ethane.



Pelleted dynamic GDP microtubules were resuspended into warm kinesin

solution. From this MT-kinesin mixture, 4 ml was added to the EM grid and

allowed to incubate for 1 min before blotting and vitrification.

Electron Microscopy and Image Processing

Cryo-grids were loaded into a 626 single-tilt cryo-transfer system (Gatan) and

imaged in a Titan electron microscope (FEI) operated at 300 keV. Data were

collected using the Leginon software (Suloway et al., 2005) for exposure tar-

geting, and the FEI Low-Dose Kit was used for focusing and image acquisition.

Low-dose exposures (25 e�/Å2) were acquired at 72,0003 magnification on

Kodak SO163 film, with underfocus ranging from 1.4 to 3.5 mm. Films were

digitized at 0.87 Å/pixel using a Nikon CoolScan 8000 (see Table S1A for the

number of films digitized for each sample). Image processing was performed

within the Appion processing environment (Lander et al., 2009). Contrast trans-

fer function (CTF) was estimated, and the best-quality micrographs selected

for further processing. Microtubules were manually selected, and overlapping

segments were extracted with a spacing of 80 Å, phase flipped, and binned by

a factor of two. The particle stacks were subjected to iterative multivariate

statistical analysis (MSA) and multireference alignment (MRA). Particles in

classes that did not clearly show kinesin density (for kinesin-bound samples),

or whose power spectra did not exhibit layer lines beyond 10 Å, were excluded

from further processing, as were classes that did not have either 13 or 14

protofilaments.

3D Reconstruction

Undecorated 13 and 14 pf MT densities were used as initial models for a

preliminary reconstruction of the kinesin-bound Taxol MT data set. The proto-

filament with the best apparent kinesin density was extracted and used to

generate 13 and 14 pf microtubule maps with seams. These preliminary den-

sities served as starting models for refinement of complete data sets using

IHRSR (Egelman, 2007). Our modified IHRSR reconstruction schema (Fig-

ure S2) allows us to take advantage of the helical character of the microtubule

lattice, without artifacts due to seam symmetrization. A final refinement of

the alignment parameters was performed only for the 14 pf MT particles using

FREALIGN (Grigorieff, 2007), with a modified script that incorporated the sym-

metrization and MT seam regeneration after each round. The final resolution

for each reconstruction was estimated by calculating the Fourier shell corre-

lation (FSC) of a single dimer (Figure S2B). Resolution-dependent negative

b-factors were applied to the three reconstructions using BFACTOR (http://

grigoriefflab.janelia.org/bfactor).

Atomic Model Building and Refinement with Rosetta

Initial models of the microtubule lattice were obtained through rigid-body

docking the electron crystallographic structure of tubulin (PDB ID code

1JFF; Löwe et al., 2001) into the cryo-EM density maps using Chimera. Ligand

conformations were copied from the corresponding crystal structures and

were held fixed during refinement. The lattice was modeled in a 33 3 arrange-

ment using symmetry operations as previously described (DiMaio et al., 2011).

Structure refinement was carried out using the RosettaCM protocol (Song

et al., 2013) supplemented with an electron density term (DiMaio et al.,

2009). Regions in the starting 1JFF structure that fit the density poorly were

rebuilt using short fragments fromproteins of known structure with similar local

sequences, and recombination with X-ray crystallographic tubulin structures

at higher resolution in different nucleotide states was used to increase accu-

racy in the vicinity of the nucleotide binding sites (see the Extended Experi-

mental Procedures for details). Following loop region rebuilding and structure

hybridization, models were relaxed in the Rosetta all-atom force field supple-

mented with the electron density term. Analyses in the text are based on

the lowest 1% total energy (Rosetta energy + electron density fit) models for

each map. The spread of energies and rmsds of these low-energy ensembles

was small (average 0.56 Å rmsd).

Molecular Graphics

All structural figures andmovies were generated with UCSFChimera (Goddard

et al., 2007; Pettersen et al., 2004). Displacement vectors were generated

with a Python program that creates marker (.cmm) files that are viewable

and editable in Chimera (available upon request).
ACCESSION NUMBERS

The cryo-EM maps and coordinates of the energy-minimized consensus

Rosetta models have been deposited for the three microtubule studies

we describe: GMPCPP-stabilized (Electron Microscopy Data Bank [EMDB]

accession number 5895; PDB ID code 3J6E), GDP, dynamic (EMDB accession

number 5896; PDB ID code 36JF), and Taxol-stabilized microtubules (EMDB

accession number 5897; PDB ID code 3J6G).
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table, seven movies, and six figures and can be found with this article online
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